Effizientes Absortieren mit einem rechteckigen Greifer

Roland Glück

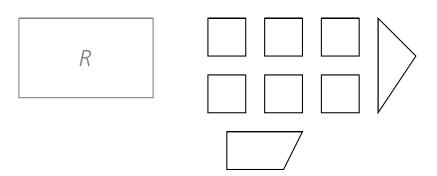
roland.glueck@dlr.de Deutsches Zentrum für Luft- und Raumfahrt Augsburg, 4. Juli 2016

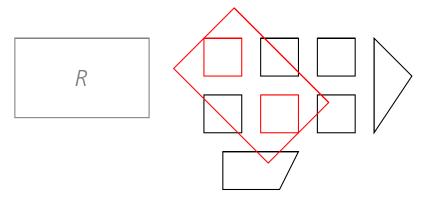
Motivation: Cutterzentrum

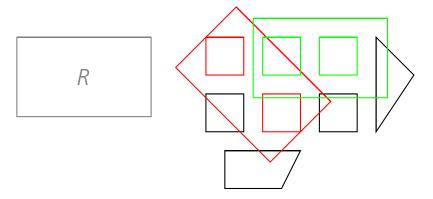
Grundlegende Definitionen

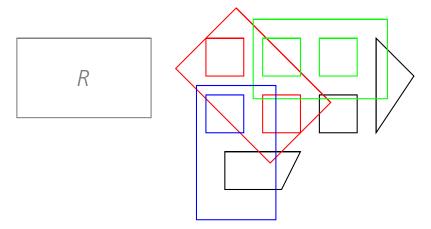
Definition

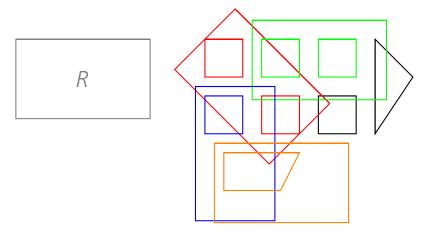
- Ein Nesting $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$ ist eine Menge von n Polygonen.
- Ein Cover $\mathbf{C} = \{R_1, R_2, \dots, R_m\}$ eines Nestings \mathbf{P} durch einen Greifer R ist eine Menge von Rechtecken, so dass
 - jedes R_i eine Kopie von R ist und
 - jedes Polygon $P_i \in \mathbf{P}$ von mindestens einem Rechteck $R_j \in \mathbf{C}$ vollständig überdeckt wird.
- Kopien von R entstehen durch Verschiebung und Rotation von R
- Gesucht: Optimales Cover, d.h., möglichst wenige Kopien von R (minimale Anzahl von Absortiervorgängen)

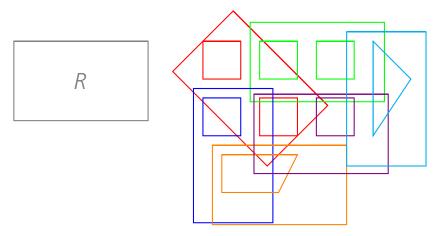




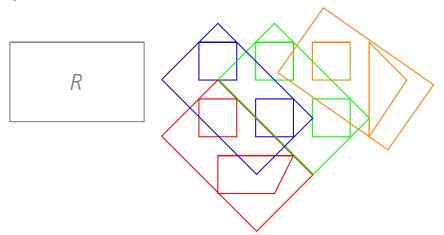




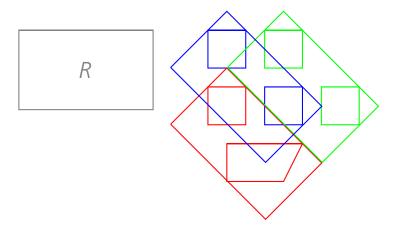




Optimales Cover



Zerlegung eines optimalen Covers



Zerlegungseigenschaft von optimalen Covern

- Betrachte ein optimales Cover $\mathbf{C} = \{R_1, R_2, \dots, R_m\}$ und
- \bullet entferne daraus ein Rechteck R_i samt aller von ihm überdeckten Polygone.
- Dann ist $\mathbb{C}\setminus\{R_i\}$ ein optimales Cover der verbleibenden Polygone.

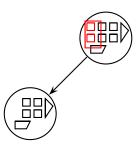
Kandidatenrechtecke

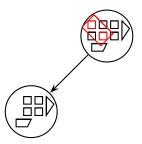
Wenn wir für jedes Nesting ein Rechteck eines optimalen Covers wüssten, dann

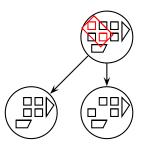
- könnten wir das Rechteck samt der überdeckten Polygone entfernen und
- mit dem Rest weitermachen bis
- das leere Nesting (kein Polygon) übrigbleibt.

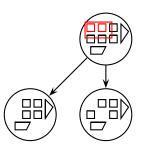
Aber wir können eine **Menge** von Kandidatenrechtecken konstruieren und damit arbeiten.

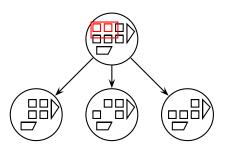
Idee: Jedes Polygon muss irgendwann überdeckt werden, also wähle ein **Pivotpolygon** P_{pi} und betrachte maximale überdeckbare Mengen, die P_{pi} enthalten (später mehr).

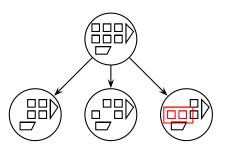


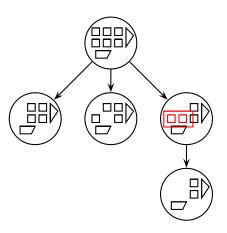


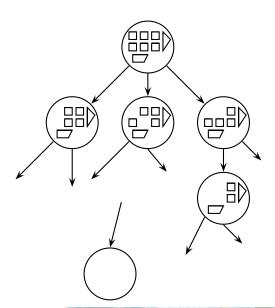


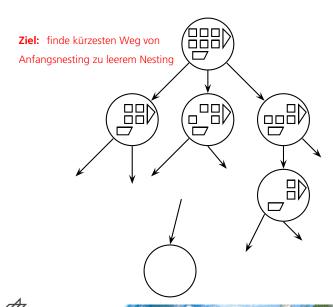














Berechnung der Kandidatenrechtecke

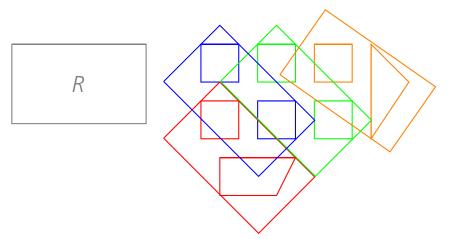
Woher kommen die Kandidatenrechtecke?

Zwei Möglichkeiten:

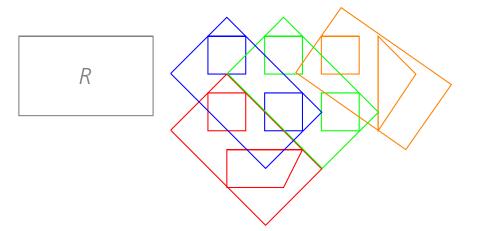
- punktbasierter Ansatz
- polygonbasierter Ansatz

zuerst punktbasierter Ansatz

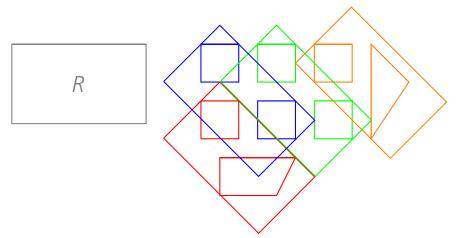
Ausrichten eines Rechtecks



Ausrichten eines Rechtecks



Ausrichten eines Rechtecks



Punktbasierter Ansatz

Jedes Rechteck kann durch ein überdeckungsäquivalentes Rechteck ersetzt werden, bei dem drei Nestingpunkte auf benachbarten Seiten liegen (Spezialfälle möglich).

Daher:

- betrachte alle Tripel (v_1, v_2, v_3) von Eckpunkten des Nestings
- richte den Greifer an (v_1, v_2, v_3) aus, sodass v_1, v_2 und v_3 auf den Seiten des Greifers liegen (falls möglich)
- bestimme die Menge der überdeckten Polygone
- behalte alle Rechtecke, die eine maximale Menge einschließlich des Pivotpolygons überderdecken

Polygonbasierter Ansatz

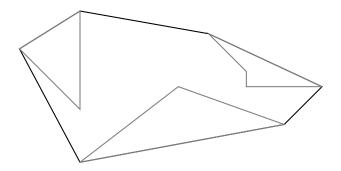
Idee:

- abstrahiere von Rechtecken und
- bestimme alle maximalen überdeckbaren Mengen, die ein passend gewähltes Pivotpolygon enthalten
- durch intelligentes Ausprobieren (*Backtracking*)
- fehlendes Puzzlestück:
 - gegeben ein Rechteck R und eine Menge von Polygonen $\{P_1, P_2, \dots, P_n\}$,
 - entscheide, ob es eine Kopie (Translation und Rotation) von *R* gibt, die alle *P_i* überdeckt,
 - und bestimme gegebenenfalls ein solche Kopie
- wenn passende Rotation bekannt ist, dann ist Translation einfach zu bestimmen

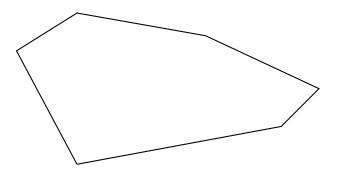
Konvexe Hülle genügt



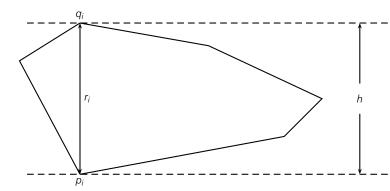
Konvexe Hülle genügt



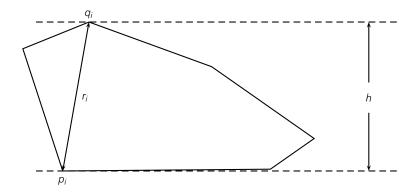
Konvexe Hülle genügt



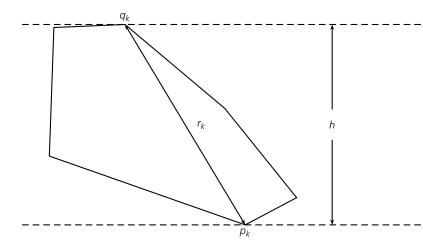
Bestimmung der Höhe



Bestimmung der Höhe



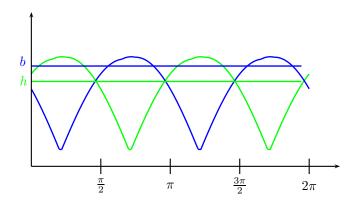
Bestimmung der Höhe



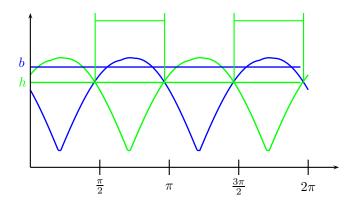
Höhen- und Breitenfunktion

- Höhe als abschnittsweise definierte Sinusfunktionen des Drehwinkels darstellbar
- Breite um $\frac{\pi}{2}$ verschoben
- bestimme alle Intervalle, in denen die H\u00f6he des rotierten Polygons kleinergleich der H\u00f6he des Greifers ist
- gehe analog für die Breite vor
- schneide die erhaltenen Intervalle

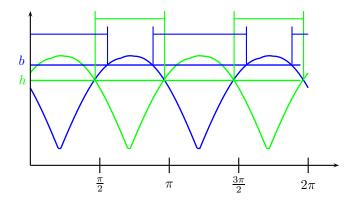
Graphische Darstellung



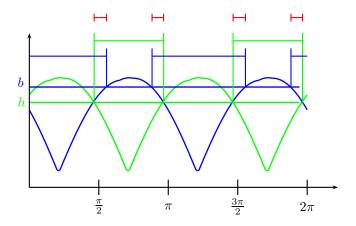
Höhenintervalle



Höhen- und Breitenintervalle



passende Intervalle



Vergleich punkt- vs. polygonbasiert

- punktbasierter Ansatz betrachtet $\sim ||\mathbf{P}||^3$ Punktekombinationen ($||\mathbf{P}|| = \text{Gesamtzahl}$ der Punkte von \mathbf{P})
- polygonbasierter Ansatz betrachtet $\sim 2^{|\textbf{P}|}$ Polygonkombinationen
- punktbasierter Ansatz gut bei hoher Polygonanzahl und niedriger Punktanzahl
- polygonbasierter Ansatz gut bei niedriger Polygonanzahl und hoher Punktanzahl
- Voraussagen auch praktisch überprüft

Ergebnisse und Ausblick

- praktische Instanzen problemlos lösbar (niedriger Minutenbereich)
- weitere Arbeiten sind am Laufen (C. Rähtz, L. Sorokin)
- Berücksichtigung von Workspaceeinschränkungen
- Optimierung der Saugerbelegung
- Einbeziehen eines Speichersystems (Schubladenspeicher)
- Anpassen an nachfolgende Prozeßschritte

Fragencover

