
Using Bisimulations in Analysis of Stochastic

Games

Roland Glück

Institut für Informatik, Universität Augsburg,
D-86135 Augsburg, Germany

glueck@informatik.uni-augsburg.de

Abstract. Stochastic Games are known to be both in the complex-
ity classes P and NP, but no provably efficietn algorithm is known. We
present an approach using bisimulations which can lead to a speed-up
under certain circumstances.

1 Introduction

1.1 General Ideas

In practice one is often confronted with systems containing a large, even infi-
nite number of states and/or transitions, e.g. in control theory, model checking,
internet routing and similar cases. If the task is to ensure a certain property
(optimality, safety, liveness) by refining, i.e. removing (in practice preventing)
transitions, this task can appear to be difficult to solve for the large system.
One possible strategy is to reduce the original system into a smaller one using
a suitable bisimulation, then to apply a known algorithm to that system, such
that a refined subsystem of it fulfils the demanded property, and in a last step to
expand that system into a subsystem of the original one. Of course this strategy
will not work in all cases. To make sense, the reduction by bisimulation has to
decrease the number of states/transitions in a significant way, an algorithm for
computing a refined system with the required property has to be known, and
the desired property has to be invariant in a certain sense with respect to the
chosen bisimulation. As new material in this paper we show that this approach
is correct for a class of stochastic games. In contrast to model checking, where
bisimulations are commonly used to check properties of a system (cf. e.g. [1]) we
will use them to construct systems with desired properties.

1.2 Recent Work

In [10] it was shown how a control policy ensuring a certain optimality property
in infinite transition systems can be obtained; that approach worked without the
use of bisimulations. However, the iteratively constructed sets (called strata) in
that method actually correspond to the equivalence classes of a suitable bisimu-
lation. The successor paper [4] gives an algebraic formulation of bisimulation in

general and shows the correctness of the approach for a certain liveness property.
The generic algorithm was described in [5]. The most recent paper [3] applies
the sketched idea to optimality problems.

1.3 Overview

The paper consists of three parts: In the first two parts we give a short overview
over stochastic games and bisimulations, resp. The next section section shows
how to use bisimulations in the analysis of stochastic games and discusses the
effiency of this approach and further work.

2 Stochastic Games

2.1 Definitions and Basic Properties

Stochastic games were first introduced in [9]. We will consider here a special
version of stochastic games, which do not mean a real restriction, according
to [2].

Definition 2.1. A simple stochastic game (SSG) is a finite directed graph G =
(V,E) with V = Vmax∪̇Vmin∪̇Vaverage∪̇{sink0}∪̇{sink1}. Every node except the

two sink-nodes has an outdegree in {1, 2}, and both sink0 and sink1 have out-

degree zero.

The sets Vmax, Vmin and Vaverage are called max, min and average nodes,
resp. For uniformity we assume from now on that V = {1, 2, . . . , n} and sink0 =
(n − 1) and sink1 = n. Often we refer to an SSG only as a graph G = (V,E)
and assume the partition to be given silently.

An SSG is played by two players, the min-player and the max-player. For
a SSG a min-strategy τ is a subset of Vmin × V ∩ E such that every node in
τ has exactly one outgoing edge. Analogously, a max-strategy σ is a subset of
Vmax×V ∩E with the same property as above. Corresponding to a pair of min-
and max-strategies (σ, τ) there is a graph Gσ,τ which arises from G by removing
all edges not chosen by σ respective τ . From mow on we will assume that every
SSG under consideration is stopping, i.e. for every pair of min- and maxstrategies
(σ, τ) some sink-node is reachable in Gσ,τ from every non-sink node. Usually, σ
refers to a max- and τ to a min-strategy.

On such a graph Gσ,τ a token is placed on a node v and moved along the
edges chosen by the min- and max-player according to their strategy. On an
average node with exactly one outgoing edge the token is moved along this edge.
If the token is on an average node with two outgoing edges one of these edges
is chosen randomly with probability 1

2 . The game ends when the token reaches
a sink node. In the case of sink0 the min-player wins, in the case of sink1 the
max-player wins.

The value valσ,τ (v) of a node v of G with respect to the strategy pair (σ, τ) is
the probality that the max-player wins if the strategies σ and τ are chosen. The

optimal value val(v) of a node v is defined by val(v) = max
σ

min
τ

valσ,τ . In [9] the

equality max
σ

min
τ

valσ,τ = min
τ

max
σ

valσ,τ is shown. As a decision problem the

SSG problem is if the optimal value of a node for given SSG is at least 1
2 . This

problem is known to be in NP ∩ coNP . However, given a min-strategy σ the
computation of an optimal associated max-strategy can be done in polynomial
time using linear programming.

An example for an SSG is given in Figure 1 where Vmax = {max1,max2},
Vmin = {min1,min2} and Vaverage = {avg}; the sinks are labelled canonically.

max1

max2

min1

min2

avg

sink0

sink1

Fig. 1. A Simple Stochastic Game

A possible pair of strategies (σ, τ) can given by σ = {(max1,min1),
(max2, avg)} and τ = {(min1, sink0), (min2, sink0)}. For this pair of strategies
we have valσ,τ (max1) = 0, valσ,τ (max2) =

1
2 , valσ,τ (min1) = valσ,τ (min2) = 0,

valσ,τ (avg) = 1
2 , valσ,τ (sink0) = 0 and valσ,τ (sink1) = 1. Obviously, this is

not the optimal strategy for the max player, who should switch his choice at
max1. The resulting strategy {(max1, avg), (max2, avg)} is optimal (which is
easy to verify, moreover, the min player can not do better), and the optimal value
function is given by val(max1) = val(max2) =

1
2 , val(min1) = val(min2) = 0,

val(avg) = 1
2 , valσ,τ (sink0) = 0 and valσ,τ (sink1) = 1.

2.2 Analysis of SSG’s

For a given pair of strategies (σ, τ) the values valσ,τ (v) can be easily computed
using facts from the theory of Markov chains. Therefore, let valσ,τ be the vector
valσ,τ = (valσ,τ (1), . . . , valσ,τ (n− 2)). The matrix Q ∈ {0, 12 , 1}

(n−2)×(n−2) with
entries qij has at position (i, j) the probability of reaching node j from node
i in one single step in Gsigtau. In particular, for a max node i the entry qij
is one iff there is the edge (i, j) in Gσ,τ , and zero otherwise (analogously for
min nodes). If an averages node i has exactly one outgoing edge (i, j) than we
have qij=1 and qij′ = 0 for all j 6= j′. Similarly, for an average node i with two
outgoing edges (i, j1) and (i, j2) we have qij1 = qij2 = 1

2 and qij = 0 for all

j 6= j1, j2. Furthermore, let b be a vector with n− 2 entries, whose i-th entry is
the probability of reaching sink1 from node i in exactly one step. Then we have
the following lemma:

Lemma 2.2. valσ,τ is the unique solution of the fixpoint equation valσ,τ =
Qvalσ,τ + b.

Obviously, the computation of valσ,τ can be done in polynomial time.
In contrast, for the computation of the optimal value no provably polynomial

algorithm is known. The optimal values val(i) for SSG’s can be shown to be the
unique solution of the following system of constraints:

val(i)=max(val(j), val(k)), if i ∈ Vmax with two successors j and k
val(i) = val(j), if i ∈ Vmax with exactly one successor j
val(i)=min(val(j), val(k)), if i ∈ Vmin with two successors j and k
val(i) = val(j), if i ∈ Vmin with exactly one successor j
val(i) = 1

2 (val(j) + val(k)), if i ∈ Vaverage with two successors j and k
val(i) = val(j), if i ∈ Vaverage with exactly one successor j
val(sink0) = 0
val(sink1) = 1
Given the optimal values for every node an optimal max strategy can be easily

determined if only the edges leading into nodes with the greater value among
the successors of a node are kept (if there are two successors with the same value
one edge can be kept arbitrarily). Analogously an optimal min strategy can be
computed from the optimal values.

3 Bisimulations

The SSG’s from the previous section can have a large numbers of nodes. One
possibility to reduce the problem is the use of bisimulations, which will be in-
troduced in this section. Before getting formal we fix some notation.

For a relation R we denote its converse by R◦. For relational composition we
use the semicolon ; . If E ⊆ X ×X is an equivalence relation we write x/E for
the equivalence class of an element x ∈ X . For a subset X ′ ⊆ X we define X ′/E
by X ′/E =

⋃

x∈X′

x/E.

3.1 Basic Definitions

Definition 3.1. A bisimulation between two relations R ⊆ X × X and R′ ⊆
X ′ × X ′ is a relation B ⊆ X × X ′ with the properties B◦;R ⊆ R′;B◦ and

B;R′ ⊆ R;B.

Intuitively this means that if a step from x to y is possible under the relation
R then a step from x′ to y′ is possible under R′ where x and x′ respectively
y and y′ are related via B. The analogous property holds for transitions in R′

compared to those in R; here the elements are related by B◦.

A bisimulation between a relation R ⊆ X × X and itself is called an auto-

bisimulation. Since autobisimulations are closed under union, composition and
conversion and the identity is an autobisimulation there is a coarsest autobisim-
ulation for a relation R ⊆ X×X , which is an equivalence. An autobisimulation,
which is also an equivalence is called an autobisimulation equivalence.

Here we are interested in a special kind of autobisimulation equivalences,
which also respects a given partition of the node set of a graph. Therefore we
define:

Definition 3.2. An autobisimulation equivalence B on a relation R ⊆ X ×X
respects the partition X =

⋃̇

i∈I

Xi if for every i ∈ I the set Xi can be written as

the union of suitable equivalence classes of B.

This means that B relates only elements of the same sets Xi to each other.
Also here, the set of autobisimulation equivalences respecting a given partition
is closed under composition, union and taking the converse, and since the iden-
tity is an autobisimulation equivalence respecting every partition there is also a
unique coarsest autobisimulation equivalence respecting a given partition. In [8]
it is shown that this coarsest autobisimulation equivalence can be computed in
O(log|R| · |X |) (or O(log|E| · |V |) in terms of a graph G = (V,E)).

3.2 Quotient and Expansion

For our purposes bisimulation equivalences can be used to reduce the state num-
bers of stochastic games in a reasonable way. This is done via the quotient graph:

Definition 3.3. Let G = (V,E) a stochastic game with the usual partition

V = Vmax ∪̇ Vmin ∪̇ Vaverage ∪̇ {sink0} ∪̇ {sink1} and B an autobisimula-

tion equivalence for G respecting this partition. The quotient G/B of G by B is

defined as the stochastic game GB = (VB , EB) with

– VB = {v/B | v ∈ V }
– EB = {(x/B, y/B | (x, y) ∈ E)}

The partition of VB into max, min and average nodes is given by VBmax
=

Vmax/B, VBmin
= Vmin/B and VBaverage

= Vaverage/B. The sinks in G/B are

sink0/B and sink1/B.

This construction is analogous to the one of a minimal automaton in au-
tomata theory, see for example the classics [6] and [7].

Note that this construction is well defined: First, the sets VBmax
, VBmin

,
VBaverage

, {sink0} and sink1 are disjoint, since the corresponding sets in G are
disjoint and B respects this partition of V . Second, according to the construction
of EB both sink0/B and sink1 have no outgoing edges in EB . For analogous
reasons every other node in VB has at least one and at most two outgoing edges
in EB . Note that a node v ∈ V can have two outgoing edges in E whereas the
node v/B can have exactly one outgoing edge in EB .

The coarsest bisimulation equivalence of the SSG from Figure 1 induces the
equivalence classes {max1,max2}, {min1,min2}, {avg}, {sink0} and {sink1}.
So the coarsest quotient is given by the SSG from Figure 2, where the nodes
caption is selfexplaining.

max12 min12

avg

sink0

sink1

Fig. 2. A Coarsest Quotient

If we want to reduce the number of states of a stochastic game in a suitable
manner we use the coarsest autobisimulation equivalence to build the quotient,
because it reduces the number of nodes maximally among all autobisimulation
equivalences. In this case the resulting quotient is called the coarsest quotient.

Generally, the coarsest quotient of a stochastic game will have a smaller
number of nodes than the original one, especially it is well structured (i.e., it
contains identic subgraphs, which can be merged by the coarsest quotient).

4 Putting the Pieces together

To make use of the quotient operation in SSG’s we have to show how to construct
an optimal strategy via the quotient. The key idea is that the optimal values
in the quotient correspond to the optimal values in the original SSG. This is
expressed in the following lemma:

Lemma 4.1. Let G = (V,E) be an SSG, B an autobisimulation equivalence for

G and valB : V/B → [0, 1] the function of the optimal values of G/B. Then the

function val′ : V → [0, 1], defined by val′(v) = valB(v/B), is the optimal value

function of G.

Proof. The idea of the proof is to show that the function val′ fulfilles the con-
straints from 2.2 for all nodes v ∈ V . For an arbitrary node v ∈ V we distinguish
the following cases:

(a) v/B is an average node with one outgoing edge and v has two outgoing
edges.

(b) v/B is an average node with one outgoing edge and v has one outgoing edge.
(c) v/B is an average node with two outgoing edges.
(d) v/B is a min (max) node with one outgoing edge and v has two outgoing

edges.
(e) v/B is a min (max) node with one outgoing edge and v has one outgoing

edge.
(f) v/B is a min (max) node with two outgoing edges and v has two outgoing

edges.
(g) v/B is a sink node.

First, assume case (a), and let w/B be the successor of v/B. Then v has exactly
two successorsw1 and w2. According to the construction of val′ we have val′(v) =
valB(v/B) and val′(w1) = val′(w2) = valB(w/B). Because valB is the optimal
value function on G/B we have valB(v/B) = valB(w/B). So the constraint
val′(v) = 1

2 (val
′(w1) + val′(w2)) is fulfilled.

Case (b) is trivial, since the values of v/B and v and their successors simply
coincide.
In case (c) let w1/B and w2/B be the two successors of v/B. Then v has also two
successors w′ and w′′ with w′ ∈ w1/B and w′′ ∈ w2/B. Because of valB(v/B) =
1
2 (valB(w1/B) + valB(w2)/B) we have according to the construction of val′ the
equality val′(v) = 1

2 (val
′(w′) + val′(w′′)).

In the cases (d)-(g) we consider only min nodes, the proof for max nodes is done
analogously. So in case (d) let w/B be the successor of v/B and w′ and w′′ the
two distinct successors of v (note that {w′, w′′} ⊆ w/B). Because valB is the
optimal value function we have valB(v/B) = valB(w/B). By construction of
val′ we have val′(v) = valB(v) and val′(w′) = val′(w′′) = valB(w/B), so the
constraint val′(v) = min{val′(w1), val

′(w2)}.
Case (e) is as trivial as case (b).
In case (f) let w1/B and w2/B be the two successors of v/B. Then v has also two
successors w′ and w′′ with w′ ∈ w1/B and w′′ ∈ w2/B. Because of valB(v/B) =
min{valB(w1/B), valB(w2)/B} we have according to the construction of val′

the equality val′(v) = min{val′(w′), val′(w′′)}.
The sink nodes from case (g) are assigned the right values due to the requirements
on B. �

So because from the optimal value function an optimal strategy can easily
deduced we have the following algorithm for computing an optimal strategy for
a SSG G:

1. Construct the coarsest quotient G/B
2. Compute the optimal value valB function of G/B
3. Expand the valB to the optimal value function val of G
4. Construct an optimal strategy from val

Here the third and fourth step can easily be done in linear time in |V |+ |E|.
Let us demonstrate this approach on our example from Figure 1. After

the first step we obtain the coarsest quotient from Figure 2. The computation

of the optimal value function valB on the quotient yields valB(max12) = 1
2 ,

valB(min12) = 0, valB(avg) = 1
2 , valB(sink0) = 0 and valB(sink1) = 1. So

the optimal value function val of the initial SSG is given by val(max1) =
val(max2) = 1

2 , val(min1) = val(min2) = 0, val(avg) = 1
2 , valB(sink0) = 0

and valB(sink1) = 1. Now a pair of optimal strategies can easily be determined.

5 Conclusion

Given an algorithm which computes the optimal value function of an SSG
G = (V,E) in time O(f(|V |, |E|)) our algorithm computes the optimal value
function in time O(log|E| · |V | + f(|V/B|, |E/B|)) where (V/B,E/B) is the
coarsest quotient of G. The runtime advantage (is there is one) heavily depends
on how the coarsest simplifies the original SSG. In certain cases, for example if
G has a high degree of symmetry or redundancy, our algorithm will lead to a
speed up compared to the immediate application of the algorithm for computing
an optimal strategy.

References

1. C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.
2. A. Condon. The complexity of stochastic games. In Information and Computation,

volume 96, pages 203–224, 1992.
3. R. Glück. Using bisimulations for optimality problems in model refinement. In

R. Berghammer and B. Möller, editors, 12th International Conference on Rela-

tional and Algebraic Methods in Computer Science — RAMICS 2011, volume 6663
of Lecture Notes in Computer Science, pages 164–179. Springer, 2011.

4. R. Glück, B. Möller, and M. Sintzoff. A semiring approach to equivalences, bisim-
ulations and control. In R. Berghammer, A.M. Jaoua, and B. Möller, editors, 11th
International Conference on Relational Methods in Computer Science — RelMiCS

2009, volume 5827 of Lecture Notes in Computer Science, pages 134–149. Springer,
2009.

5. R. Glück, B. Möller, and M. Sintzoff. Model refinement using bisimulation quo-
tients. In M. Johnson and D. Pavlovic, editors, 13th International Conference on

Algebraic Methodology And Software Technology — AMAST 2010, volume 6486 of
Lecture Notes in Computer Science, pages 76–91. Springer, 2011.

6. J. Myhill. Finite automata and the representation of events. WADD TR-57-624,
pages 112–137, 1957.

7. A. Nerode. Linear automaton transformations. volume 9 of Proceedings of the

American Mathematical Society, pages 541–544, 1958.
8. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal for

Computing, 16(6).
9. L.S. Shapley. Stochastic games. In Proceedings of the National Academy of Sci-

ences, volume 39, pages 1095–1100, 1953.
10. M. Sintzoff. Synthesis of optimal control policies for some infinite-state transition

systems. In P. Audebaud and C. Paulin-Mohring, editors, Mathematics of Program

Construction — MPC 2008, volume 5133 of Lecture Notes in Computer Science,
pages 336–359. Springer, 2008.

