Bisimulations in Game Analysis

Roland Glück¹

¹Universität Augsburg

2.6.2011 Rotterdam

< □ > < 同 > < 回 > < 回 > < 回 >

Example Game Solution Strategy

About

- about: simple two-player games
- solution in terms of relations/graphs
- simplification using bisimulations

< □ > < 同 > < 回 > < 回 > < 回 >

Example Game Solution Strategy

Outline

- introductory example
- algebraic theory
- bisimulations
- solution using bisimulations

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ

Example Game Solution Strategy

Example Game

- white party begins
- no taking of pieces
- white moves one field diagonally downwards
- black moves one field diagonally in each direction
- white wins if no black move is possible
- black wins if no white move is possible or
- black reaches the back rank

< □ > < 同 >

∃ ► < ∃ ►</p>

Example Game Solution Strategy

Example Positions

black to move, white wins

black wins

white to move, black wins

< □ > < 同 > < 回 > < 回 > < 回 >

Example Game Solution Strategy

Solution Strategy

- which player can enforce the win?
- what is the winning strategy?
- solution via backward analysis
- using game graph

< □ > < 同 > < 回 > < 回 > < 回 >

Algebraic Theory Bisimulations lution using Bisimulations Example Game Solution Strategy

Game Graph

Example Game Solution Strategy

Initial Considerations

Observations:

- if from position *P* black has a move leading into a winning position for black then *P* is also a winning position for black (and hence a losing position for white)
- if from position P all black's moves are leading into a winning position for white then P is a losing position for black (hence a winning position for white)
- obviously the other way round (change the roles of black and white)

▲口 > ▲輝 > ▲ 注 > ▲ 注 > →

Algebraic Theory Bisimulations plution using Bisimulations Example Game Solution Strategy

Solving the Game

Algebraic Theory Bisimulations plution using Bisimulations Example Game Solution Strategy

Solving the Game

Algebraic Theory Bisimulations plution using Bisimulations Example Game Solution Strategy

Solving the Game

Algebraic Theory Bisimulations plution using Bisimulations Example Game Solution Strategy

Solving the Game

Algebraic Theory Bisimulations plution using Bisimulations Example Game Solution Strategy

Solving the Game

Impartial Two-Player Games Modal Operators

Simplification

- again two-player games
- no move labels
- terminal positions are losing positions
- winning and losing positions are characterised similarly as above
- previous work by Backhouse and Michaelis, RelMiCS 7, 2003 (impartial two-player games)

< □ > < 同 > < 回 > < 回 > < 回 >

Impartial Two-Player Games Modal Operators

Diamond and Box

- game corresponds to a finite graph G = (V, E)
- for $W \subseteq V$ define the modal operators *diamond* and *box* by

•
$$|E\rangle W = \{v \in V \mid \exists w \in W : (v, w) \in E\}$$

•
$$|E]W = V - |E\rangle(V - W)$$

- $|E\rangle W$ is the preimage of W under E
- |*E*]*W* is the set of all nodes from which *every E*-transition leads into a node in *W*

ヘロト 人間 ト イヨト イヨト

Impartial Two-Player Games Modal Operators

Properties of Modal Operators

- diamond and box are isotone in their second argument wrt. the subset order ⊆
- hence $|E\rangle|E]: \mathcal{P}(V) \rightarrow \mathcal{P}(V)$ is isotone wrt. to \subseteq
- every node without outgoing edges lies in |*E*]*W* for arbitrary *W* ⊆ *V*
- *|E*]∅ corresponds to nodes without outgoing edges in *G*, so-called *terminal* nodes or positions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Impartial Two-Player Games Modal Operators

Game Analysis using Modal Operators

- compute $L_0 = |E] \emptyset$
- compute $W_0 = |E\rangle L_0$
- compute $L_1 = |E| W_0$
- compute $W_1 = |E\rangle L_1$

•

• compute $W_i = |E\rangle|E]W_{i-1}$ till $W_i = W_{i-1}$

<ロト < 課 > < 理 > < 理 > 一 理

Impartial Two-Player Games Modal Operators

Fixpoint Characterisation

- fixpoint *W* (winning positions) reached due to isotony of $|E\rangle|E|$ and finiteness of *V*
- analogously for *L* (losing positions)
- winning and losing positions can be characterised as smallest fixpoints
- remaining positions are stalemate positions
- no stalemate positions in acyclic games

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Impartial Two-Player Games Modal Operators

Variations

slight adaptations for example game

•
$$E = E_w \dot{\cup} E_b$$

•
$$W_{w,i} = L_{b,i}$$
 and $W_{b,i} = L_{w,i}$

- $W_{w,i} = |E_w\rangle W_{w,i-1} \cup (|E_b] W_{w,i-1} \cap |E_b\rangle W_{w,i-1})$
- symmetrically for W_{b,i}
- iteration starts at predefined winning and losing positions

< ロ > < 同 > < 回 > < 回 > .

Introduction Algebraic Theory Bisimulations

Motivation Bisimulation Basics

Take a Look back

Motivation Bisimulation Basics

Observations on the Game Graph

- game graph is symmetric
- pairs of equivalent positions
- w.l.o.g.
- how to exploit this?
- use of bisimulations

< ロ > < 同 > < 回 > < 回 > < □ > <

Motivation Bisimulation Basics

Definition

 $B\subseteq V_1\times V_2$ is a *bisimulation* between two graphs (V_1,E_1) and (V_2,E_2) iff

•
$$v_1 B v_2 \wedge v_1 E_1 w_1 \Rightarrow \exists w_2 : w_1 B w_2 \wedge v_2 E_2 w_2$$

•
$$v_2 B^{\smile} v_1 \wedge v_2 E_2 w_2 \Rightarrow \exists w_1 : w_2 B^{\smile} w_1 \wedge v_1 E_1 w_1$$

relational definition:

•
$$B^{\smile}$$
; $E_1 \subseteq E_2$; $B^{\smile} \land R$; $E_2 \subseteq E_1$; B

Motivation Bisimulation Basics

Coarsest Bisimulation

- bisimulations between G and itself are closed under
 - union,
 - composition, and
 - taking the converse
- identity is a bisimulation between G and itself
- existence of a coarsest bisimulation equivalence on G

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation Bisimulation Basics

Quotient Graph

for a bisimulation equivalence *B* and a graph G = (V, E) the *quotient* G/B = (V/B, E/B) is defined by

• V/B is the set of equivalence classes of B

•
$$(v/B, w/B) \in E/B \Leftrightarrow (v, w) \in E$$

G/B has in general a smaller node set then G

ヘロト 人間 ト イヨト イヨト

3

The Algorithm Runtime Considerations Outlook

Hooray!

!!! good news !!!

Theorem

Under certain conditions the sets $|E\rangle W$ and |E]W can be written as the union of the sets from $|E/B\rangle W/B$ and |E/B]W/B.

Roland Glück Bisimulations in Game Analysis

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

The Algorithm Runtime Considerations Outlook

!!! good news !!!

Theorem

Under certain conditions the sets $|E\rangle W$ and |E]W can be written as the union of the sets from $|E/B\rangle W/B$ and |E/B]W/B.

!!! very good news !!!

The sets occurring in the computation of W and L fulfil these conditions!

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

The Algorithm Runtime Considerations Outlook

Final Algorithm

Algorithm:

- compute the coarsest bisimulation B on G = (V, E)
- compute the winning positions W_B and the losing positions L_B in G/B using the known algorithm
- the winning positions W in G is the set of nodes $\bigcup_{w_B \in W_B} w_B$
- analogously for the losing and stalemate positions

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

The Algorithm Runtime Considerations Outlook

Efficiency

- makes sense if computing G/B can be done faster than running the algorithm immediately on G
- computation of G/B in O(|E| · log(|V|)) possible (Paige and Tarjan)
- original algorithm can take up to Θ(|V|^{1.5}) on a certain class of games
- for this class of games the detour over bisimulations has worst case runtime of Θ(|V| · log(|V|))

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

The Algorithm Runtime Considerations Outlook

future work:

- application to stochastic games
- application to multi-player games
- formalisation in semiring framework

< ロ > < 同 > < 回 > < 回 > .

The Algorithm Runtime Considerations **Outlook**

Bisimulations in Game Analysis

Roland Glück¹

¹Universität Augsburg

2.6.2011 Rotterdam

< □ > < 同 > < 回 > < 回 > < 回 >

The Algorithm Runtime Considerations Outlook

About

- about: simple two-player games
- solution in terms of relations/graphs
- simplification using bisimulations

< □ > < 同 > < 回 > < 回 > < 回 >

The Algorithm Runtime Considerations Outlook

Outline

- introductory example
- algebraic theory
- bisimulations
- solution using bisimulations

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ

The Algorithm Runtime Considerations Outlook

Example Game

- white party begins
- no taking of pieces
- white moves one field diagonally downwards
- black moves one field diagonally in each direction
- white wins if no black move is possible
- black wins if no white move is possible or
- black reaches the back rank

< □ > < 同 >

→ ∃ > < ∃ >

The Algorithm Runtime Considerations Outlook

Example Positions

black to move, white wins

black wins

white to move, black wins

< ロ > < 同 > < 回 > < 回 > .

The Algorithm Runtime Considerations Outlook

Solution Strategy

- which player can enforce the win?
- what is the winning strategy?
- solution via backward analysis
- using game graph

< ロ > < 同 > < 回 > < 回 > .

The Algorithm Runtime Considerations Outlook

Game Graph

