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Example Game

21
3

54
6

- white party begins
- no taking of pieces
- white moves one field

diagonally downwards
- black moves one field diagonally

in each direction
- white wins if no black

move is possible
- black wins if no white

move is possible or
- black reaches the back rank
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Example Positions

black to move,
white wins

black wins white to move,
black wins
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Solution Strategy

which player can enforce the win?

what is the winning strategy?

solution via backward analysis

using game graph
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Initial Considerations

Observations:

if from position P black has a move leading into a winning
position for black then P is also a winning position for black
(and hence a losing position for white)

if from position P all black’s moves are leading into a
winning position for white then P is a losing position for
black (hence a winning position for white)

obviously the other way round (change the roles of black
and white)
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Simplification

again two-player games

no move labels

terminal positions are losing positions

winning and losing positions are characterised similarly as
above

previous work by Backhouse and Michaelis, RelMiCS 7,
2003 (impartial two-player games)
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Diamond and Box

game corresponds to a finite graph G = (V , E)

for W ⊆ V define the modal operators diamondand box by
|E〉W = {v ∈ V | ∃w ∈ W : (v , w) ∈ E}
|E ]W = V − |E〉(V − W )

|E〉W is the preimage of W under E

|E ]W is the set of all nodes from which every E -transition
leads into a node in W
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Properties of Modal Operators

diamond and box are isotone in their second argument wrt.
the subset order ⊆

hence |E〉|E ] : P(V ) → P(V ) is isotone wrt. to ⊆

every node without outgoing edges lies in |E ]W for
arbitrary W ⊆ V

|E ]∅ corresponds to nodes without outgoing edges in G,
so-called terminal nodes or positions
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Game Analysis using Modal Operators

compute L0 = |E ]∅

compute W0 = |E〉L0

compute L1 = |E ]W0

compute W1 = |E〉L1

.......

compute Wi = |E〉|E ]Wi−1 till Wi = Wi−1
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Fixpoint Characterisation

fixpoint W (winning positions) reached due to isotony of
|E〉|E ] and finiteness of V

analogously for L (losing positions)

winning and losing positions can be characterised as
smallest fixpoints

remaining positions are stalemate positions

no stalemate positions in acyclic games
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Variations

slight adaptations for example game

E = Ew ∪̇Eb

Ww ,i = Lb,i and Wb,i = Lw ,i

Ww ,i = |Ew〉Ww ,i−1 ∪ (|Eb]Ww ,i−1 ∩ |Eb〉Ww ,i−1)

symmetrically for Wb,i

iteration starts at predefined winning and losing positions
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Observations on the Game Graph

game graph is symmetric

pairs of equivalent positions

w.l.o.g.

how to exploit this?

use of bisimulations
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Definition

B ⊆ V1 × V2 is a bisimulation between two graphs (V1, E1) and
(V2, E2) iff

Dom(B) = X1 and Cod(B) = X2

v1Bv2 ∧ v1E1w1 ⇒ ∃w2 : w1Bw2 ∧ v2E2w2

v2B`v1 ∧ v2E2w2 ⇒ ∃w1 : w2B`w1 ∧ v1E1w1

relational definition:

B`; E1 ⊆ E2; B` ∧ R; E2 ⊆ E1; B
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Coarsest Bisimulation

bisimulations between G and itself are closed under
union,
composition, and
taking the converse

identity is a bisimulation between G and itself

existence of a coarsest bisimulation equivalence on G
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Quotient Graph

for a bisimulation equivalence B and a graph G = (V , E) the
quotient G/B = (V/B, E/B) is defined by

V/B is the set of equivalence classes of B

(v/B, w/B) ∈ E/B ⇔ (v , w) ∈ E

G/B has in general a smaller node set then G
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Hooray!

!!! good news !!!

Theorem

Under certain conditions the sets |E〉W and |E ]W can be
written as the union of the sets from |E/B〉W/B and
|E/B]W/B.

Roland Glück Bisimulations in Game Analysis



Introduction
Algebraic Theory

Bisimulations
Solution using Bisimulations

The Algorithm
Runtime Considerations
Outlook

Hooray!

!!! good news !!!

Theorem

Under certain conditions the sets |E〉W and |E ]W can be
written as the union of the sets from |E/B〉W/B and
|E/B]W/B.

!!! very good news !!!

The sets occurring in the computation of W and L fulfil these
conditions!
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Final Algorithm

Algorithm:

compute the coarsest bisimulation B on G = (V , E)

compute the winning positions WB and the losing positions
LB in G/B using the known algorithm

the winning positions W in G is the set of nodes
⋃

wB∈WB

wB

analogously for the losing and stalemate positions
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Efficiency

makes sense if computing G/B can be done faster than
running the algorithm immediately on G

computation of G/B in O(|E | · log(|V |)) possible (Paige
and Tarjan)

original algorithm can take up to Θ(|V |1.5) on a certain
class of games

for this class of games the detour over bisimulations has
worst case runtime of Θ(|V | · log(|V |))
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future work:

application to stochastic games

application to multi-player games

formalisation in semiring framework
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