
Bisimulations and
Model Refinement

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat)
der Fakultät für Angewandte Informatik

der Universität Augsburg

Roland Glück

University of Augsburg

Erstgutachter: Prof. Dr. Bernhard Möller
Zweitgtuachter: Prof. Dr. Robert Lorenz

In Memory of my Father

CONTENTS

Contents

Acknowledgement ix

1 Introduction 1
1.1 Motivation and General Idea . 1
1.2 Organisation . 4

2 Writing Conventions 5

3 Example 7

4 Set-labelled Graphs and Bisimulations 13
4.1 Set-labelled Graphs . 13

4.1.1 Basic Definitions . 13
4.1.2 A Data Structure for Set-labelled Graphs 14

4.2 Bisimulations for Set-labelled Graphs 19

5 Models 21
5.1 Models . 21
5.2 Model Refinement and Submodels . 22

6 Models and Bisimulations 25
6.1 Bisimulations for Models . 25
6.2 Autobisimulations and Quotient Operation 27
6.3 Expansion Operation . 32

7 Control of Plant Automata 35
7.1 Basic Definitions . 35
7.2 Deciding Controllability . 38

7.2.1 Controllable Predecessors . 38
7.2.2 Algorithms for Deciding Controllability 39

v

CONTENTS

7.2.3 Compatibility with Bisimulation Equivalences 42
7.3 Implementation Details . 44

7.3.1 Basic Computation of a Controller 44
7.3.2 Running Time Considerations 45

7.4 Computing Controllers via Quotients 49
7.4.1 Compatibility of Controllers with Bisimulation Quotients . . . 49
7.4.2 Running Time Considerations 50

8 Target Models 53
8.1 Dioids . 53
8.2 Models and Costs . 55

8.2.1 Costs, Distances and Optimal Walks 55
8.2.2 Properties and Existence of Optimal Walks 58
8.2.3 Label-optimised Models . 60

8.3 Optimality and Refineability . 61
8.4 Target Models with Cumulative S-Dioids 64
8.5 Target Models with Non-Cumulative S-Dioids 67
8.6 Target Models and Bisimulations . 69

9 Linear Fixpoints 77
9.1 Theoretical Considerations . 77
9.2 Interpretations . 82

10 Stochastic Games 85
10.1 An Introduction to Stochastic Games 85
10.2 Stochastic Games and Bisimulation Quotients 89
10.3 Algorithms for Stochastic Games . 92

10.3.1 Successive Approximation . 93
10.3.2 Policy Improvement . 93

11 An Algebraic Approach 97
11.1 Overview . 97
11.2 Semirings, Tests and Partitions . 98
11.3 Partitions . 100
11.4 Modality and Symmetry . 105
11.5 Equivalences . 111

11.5.1 Equivalences and Fixpoints . 111
11.5.2 Equivalences and Partitions . 113

11.6 Atomic Tests and Equivalence Classes 118
11.7 Bisimulations . 119
11.8 Application to a Simple Control Objective 123

vi

CONTENTS

12 Automated Theorem Provers 127
12.1 Formalisation in Prover9/Mace4 . 128
12.2 Experiments with Prover9 . 134

12.2.1 Approach and Additional Predicates 134
12.2.2 Experimental Results . 136

13 Conclusion 137
13.1 Summary . 137
13.2 Future Work and Open Questions . 138

A Results of Prover9 141
A.1 Namings . 141
A.2 Folder Structure . 142
A.3 Table Structure . 143
A.4 Tabular Results . 143

Bibliography 161

Bibliography 161

List of Figures 171

List of Tables 173

List of Algorithms 174

Index 175

Curriculum Vitae 181

Curriculum Vitae 181

vii

Acknowledgement

First I want to thank all people who supported and motivated me during the work
on this thesis.

The first person I am grateful to is my supervisor Prof. Dr. Bernhard Möller,
Universität Augsburg, who supported my academic career and guided me through
my scientific work. He also enabled my work by the position at the Universität
Augsburg I had six years.

Another person I want to mention is Michel Sintzoff who passed away in 2011. He
put my attention to the topic of this thesis and was till his premature death always
open for discussions both face to face and via email.

I am grateful to my colleagues Han-Hing Dang, Martin Endres, Patrick Roocks,
Florian Wenzel and Andreas Zelend for valuable and fruitful discussions and the good
mood at our chair. Beside this, I am especially grateful to Dominik Köppl for thorough
proofreading of this thesis.

A great motivation were the meetings of the community of the RelMiCS and
RAMiCS conferences where I had the opportunity to present and discuss the recent
status of my work. I am also grateful to the anonymous referees of these conferences
who pointed out some mistakes and overlooked some others but always accepted my
submissions.

Last but not least I am grateful to my parents and my family who supported me
not only financially but also morally during the last years.

Chapter 1

Introduction

This chapter gives a rough idea of the approach which we will use in this
book. Our main goal is to construct a system with a desired property
by removing ‘bad’ transitions from a given system. However, the given
system may be a large, even infinite one. The idea is to reduce the state
number of the given transition system by constructing a system with
equivalent (with respect to the property under consideration) dynamic
behaviour. Then the problem is solved for the reduced system, and
subsequently a solution for the initial system is constructed by means
of the solution for the reduced system. We give an abstract algorithm,
which will be instantiated and slightly adapted for some problem classes
we investigate in the following chapters.

1.1 Motivation and General Idea

The problem of refining a transition system by removing undesirable transitions is
among others a central topic in control theory (see e.g. [Ber00, Son90, Vin00] for
general ideas; we will give more special references in the respective chapters). The field
of problems studied there ranges from general dynamic systems over hybrid systems to
automata and Petri nets. In the case of dynamic and hybrid systems one often has to
deal with a continuous component, usually modeled by differential equations. We will

1 Introduction

focus here on systems which are describable without such a continuous component.
Especially, we concentrate on systems with a huge or even infinite number of states as
they appear in internet routing, certain game graphs or specifications for the temporal
behaviour of large systems. The goal of the refinement procedure is to obtain a
subsystem with a desired optimality, safety, temporal or other comparable property.
In contrast to model checking we do not focus on the verification of given system
properties but on the construction of system properties.

An example for this kind of problem is finding an optimal (in most cases shortest)
way between two locations on the surface of the earth, using streets, bridges, ships
and so on, as offered by Google. In this case the application of the classical algorithm
by Dijkstra fails to the mere size of the input. So other approaches were developed,
as for example in [DGW13] and [DW13]. However, these approaches are tailored for
online-applications and take advantage of intensive precomputation. We will present
another idea which tries to solve a given problem on a smaller system and out of it
constructs a solution for the original problem.

A natural wish is to reduce the state number of a transition system in a way that does
not change its behaviour with respect to a desired property without giving away too
much information. In this case we can hope that an algorithm computing a suitable
subsystem has a better runtime if we apply it to the reduced system. Of course
we have to ensure that we can construct a subsystem of the original system in an
adequate way. This leads to a shrink-refine-expand -approach: first, we reduce the
given systems size by a suitable construction. Second, we run a known refinement
algorithm on the reduced system to ensure the given property on this system. Third,
we expand the output of the previous step into a subsystem of the given system by a
suitable refinement operation. In an abstract way, this approach can be concentrated
in Algorithm 1.

Algorithm 1 Abstract Generic Algorithm

Require: A Refinement Algorithm A for ensuring property P is known, M is a Huge
Transition System and B is a Bisimulation Equivalence for M

1: M/B ← shrinking of M by means of B
2: (M/B)′ ← A(M/B) // apply A to M/B, resulting in (M/B)′

3: M ′ ← expansion of (M/B)′ by means of B
Ensure: M ′ fulfills property P

In this abstract algorithm we have to find concrete methods for the shrinking (Line 1)
and expansion (Line 3). As possible choice we will introduce in Chapter 6 the bisimu-
lation quotient for the shrinking and the expansion for the expanding operation. The
use of bisimulation quotients for verification of system properties has a long tradition

2

1.1 Motivation and General Idea

for example in model refinement (see [BK08]) or automata theory (see [Myh57, Ner58])
and serves there as standard tool. As we assume that algorithms for the refinement
step are available (nevertheless we will discuss also this step for some cases; this
will be useful for discussing the complexity of the approach) we have to specify also a
bisimulation based expanding operation. This operation is obtained from the quotient
operation by means of a Galois connection.

To obtain a correct version of our shrink-refine-expand-approach we can not use an
arbitrary bisimulation but have to find a bisimulation that is compatible in some sense
with the desired property. Trivially, the identity is always a correct choice, since it is a
bisimulation and does not change the system at all, but it does not help in decreasing
the magnitude of the system. The key property is that compatible bisimulations are
closed under composition, relational converse and union, so there is always a coarsest
compatible bisimulation, which is also an equivalence. The number of states will be
reduced by building the quotient depending on how coarse the bisimulation is. So a
coarser bisimulation (which merges more states into one state of its quotient than a
finer one) will reduce the state number more than a finer one. A better runtime can
be expected if the constructing of the quotient is faster than the immediate execution
of the refinement algorithm (as we will see, the expansion can be done in linear time).
For transition systems M with n states and m transitions we will use an algorithm
which computes B and hence M/B in O(m · log(n)). So Algorithm 1 will lead to a
runtime improvement only if A has a runtime in Ω(m · log(n)). Whether a speed up
can be achieved depends heavily on the degree of compression by constructing M/B.
Of course, there is never a guarantee that the quotient has a smaller state number than
the original problem. This depends on the structure of the given system; a reduction
can be expected especially for well-structured, hierarchical or tree-like systems.

The shrink-refine-expand-approach can also be useful if the system under considera-
tion has an infinite number of states (compare here the work presented e.g. in [BBR04,
HHW95, JKM98]). In this case a refinement algorithm with finite runtime is in general
not available (if one is interested in the problem of shortest paths then the Dijkstra
algorithm is not applicable to an infinite system). If building the quotient yields a
system with a finite state number the problem is transformed into a solvable one. Of
course, there is never a guarantee that the quotient has a smaller state number than
the original problem. This depends on the structure of the given system; a reduction
can be expected especially for well-structured, hierarchical or tree-like systems.

Clearly, the correctness of Algorithm 1 depends on the choice of the bisimulation
equivalence B and the property P . In this work we will identify some problem classes
for which the algorithm is correct (if a suitable bisimulation equivalence is chosen).
Unfortunately, we will not present a general criterion whether a problem can be
tackled by this approach or not.

3

1 Introduction

1.2 Organisation

To give the reader a first guide through this thesis we give an overview of its organi-
sation.

In Chapter 2 we introduce and clarify our writings in order to avoid misunder-
standings. The following Chapter 3 is dedicated to the exemplary construction of a
control policy in a simple infinite transition system and motivates the use of bisimula-
tion equivalences. The control policy is obtained by use of a bisimulation equivalence
as in Algorithm 1 but without computing the bisimulation equivalence explicitly.

The formal definition of bisimulations takes place in Chapter 4. Some namings and
definitions are also given in this chapter. A formal framework for transition systems
is introduced in Chapter 5. Similarly to the previous chapter it contains mainly
definitions and writing conventions.

The terms from Chapter 4 and Chapter 5 are put together in Chapter 6. There also
the formal definition of the shrinking and expansion operation takes place but still in
an abstract generic way without concerning concrete refinement goals.

A first class of concrete problems is considered in Chapter 7. It deals with properties
similar to terms known from temporal logic. The desired goal is to ensure reachability
of or abidance in a set of ‘good’ states.

An important and comprehensive class of problems is the topic of Chapter 8. Here
we show that a large class of optimality problems, including shortest path and bottle-
neck problems, are compatible with our approach. The following Chapter 9 gives in
some points a generalisation of Chapter 8; whereas in Chapter 8 the argumentation
is done in a pointwise manner Chapter 9 uses an approach via a kind of adjacency
matrices and employs their algebraic properties.

Chapter 10 deals with so called stochastic games. This problem class is known to
be in NP ∩ coNP but there is no provably polynomial algorithm known; so even
shrinking by one node can lead to a speed up.

An algebraic formulation of our approach is given in Chapter 11. There we use semi-
rings to model relations and partitions and investigate the relationship between this
abstract structure and concrete relations and sets. Some of the ideas from Chapter 11
appear again in Chapter 12 where we investigate how the algebraic characterisations
from Chapter 11 can be used as input for automated prove systems.

Chapter 13 gives a summary of this thesis and discusses future work and open
questions. Finally, in Appendix A we give a tabular survey of the results we obtained
in the experiments concerning automated theorem proving as described in Chapter 12.

4

Chapter 2

Writing Conventions

In this chapter we introduce some writing conventions and namings we
use throughout this book. They deviate in some cases from the usual
ones, so we give them to avoid misunderstandings and ease the reading.
In reasonable cases we will deviate slightly from these conventions; the
highest goals are both exactness and readability of notation.

Throughout this work we use capital letters (D, T , V ...) for sets. The elements of a
set are denoted by lower case letters (v, x, y, ...), if necessary equipped with indices.
A set of the form {i ∈ IN |m ≤ i ≤ n} is abbreviated as {m..n}. Scripted letters (V)
denote families of sets (but we will not denote every system of sets by scripted letters).
For a set V a family of sets V = {Vi | i ∈ I} is called a partition of V if

⋃
i∈I

Vi = V

and i = j ⇔ Vi ∩ Vj 6= ∅ for all i, j ∈ I hold. To avoid notational clumsiness we use
the abbreviation

⋃
V for

⋃
V ∈V

V .

Functions are denoted by lower case letters (a, f , g, ...). For a function f : M → N
and a subset M ′ ⊆ M of M we denote by f |M ′ the restriction of f to M ′, defined
by f |M ′ : M ′ → N with f |M ′(m) = f(m) for all m ∈ M . Given a function f :
(M ×N)→ O we use the notation f(m,n) instead of the correct f((m,n)).

Relations, i.e. subsets of a cartesian product M ×N , are also sets and hence denoted
by capital letters, too (mostly R, S, but also by others). The converse of a relation R
is denoted by R◦ (i.e. R◦ = {(y, x) | (x, y) ∈ R}) and the composition of two relations

2 Writing Conventions

R and S by R;S. We also write xRy instead of (x, y) ∈ R. The identity relation over
a set M is denoted by idM , i.e. idM = {(m,m) |m ∈ M}. A relation R ⊆ M × N
is called left-total if IM ⊆ R;R◦, and right-total if IN ⊆ R◦;R holds. For a relation
R and an element x we denote the image of x under R by xR = {y |xRy}. The
preimage of x under R is defined by Rx = xR◦. By pointwise lifting to sets we define
the image and preimage of a set N under R by NR =

⋃
x∈N

xR and RN =
⋃

x∈N

Rx.

A graph G is a tuple G = (V,E) where V is an arbitrary set of node, and E ⊆ V × V
is the set of edges. So the term graph denotes explicitly a directed graph. A graph
is called finite if its node set is finite. Often we distinguish graphs by indices (G1 =
(V1, E1), G2 = (V2, E2), ...) and different nodes from the same graph by superscripted
indices, so different nodes in V1 are written v11 , v

2
1 , and so on. This convention holds

also for other sequences, in particular for the symbols of a word. We will use the
terms image and preimage also for graphs in a canonical manner.

A walk w in a graph G = (V,E) is a nonempty sequence of nodes v1v2 . . . vn such
that (vi, vi+1) ∈ E holds for all i ∈ {1..n − 1}. We will also consider infinite walks
which are infinite sequences of nodes v1v2v3 . . . with (vi, vi+1) ∈ E for all i ∈ IN+.

The edge length of a walk v1v2 . . . vn is simply n−1. A path is a walk v1v2 . . . vn with
i = j ⇔ vi = vj for all i, j ∈ {1..n−1}. Finally, a cycle is a walk v1v2 . . . vn with edge
length at least one and vi = vj ⇔ i = j ∨ |j − i| = n− 1 for all i, j ∈ {1..n}. Given
two walks w1 = w1

1w
2
1 . . . w

n
1 and w2 = w1

2w
2
2 . . . w

m
2 we define the concatenation or

gluing w1 ⊲⊳ w2 by w1 ⊲⊳ w2 = w1
1w

2
1 . . . w

n−1
1 w1

2w
2
2 . . . w

m
2 if wn

1 = w1
2 and declare it

as undefined if wn
1 6= w1

2 . We say that a node y is reachable from a node x if there
exists a walk v1v2 . . . vn with x = v1 and y = vn. Note that this predicate is not
symmetric. The set of all walks in G between x and y is denoted by WG(x, y), and
the set of all paths by PG(x, y). If G is clear from the context it will also be omitted.
A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V,E), denoted by G′ 4 G,
if V ′ ⊆ V ∧ E′ ⊆ E holds.

For relations and graphs also consult the encyclopedic work [SS93].

As usual, the end of a proof is marked by a black square (�). Sometimes we want to
insert remarks into the text. The end of such a remark is indicated by a square (�)

6

Chapter 3

Example

As a first example we solve a simple single-player game with an infinite
number of states. The solution takes place via an ad hoc approach
without theoretical background. The observations of this chapter will
serve as a motivating base for the more abstract terms in the further
course.

We consider a simple single-player game, played on the interval [3, 10] ⊆ IR. A
number in [3, 8[can be increased by one, and additionally a number in [4, 5] can also
be doubled. The goal is to obtain a number in the target interval [8, 10]. However,
increasing a number by one causes a cost of one unit, and doubling a number costs
two units. Of course, we want to reach the target interval with the lowest possible
costs.

Our task is to construct a strategy for this game, i.e., a policy that for every number
in [3, 10] indicates whether it should be increased by one or doubled. A classical
approach like the Dijsktra or Floyd-Warshall algorithm will not work for now, since
the state space is infinite. So we start with a backward analysis of the game. First,
the target interval can be reached in one step via two possibilities: it can be reached
from any number in [7, 8[by increasing it by one, and from any number in [4, 5] by
doubling. This preliminary observation can be illustrated as in Figure 3.1.

Doing the next step back, we can reach any number in [4, 5] by adding one to a number
in [3, 4], and any number in [7, 8[by increasing a number in [6, 7[by one. This yields
the situation as in Figure 3.2. However, the number 4 is contained both in the node

3 Example

[8, 10]

[7, 8[

[4, 5]

1

2

Figure 3.1: First Stage

associated with the interval [4, 5] and the one associated with [3, 4]. So the number
4 and all its predecessors and successors considered till now have to be treated in a
special way. Therefore we remove 3 from the interval [3, 4], 4 from both [3, 4] and
[4, 5], and 5 from [4, 5] and obtain the new intermediate result shown in Figure 3.3.

Because the preimage of [6, 7[under the game’s rules is [5, 6[we obtain an intermediate
result, which can be seen in Figure 3.4 (the other nodes have only empty preimages).
Here we have the same problems with the number 5 as before with 4: it is contained
both in [5, 6[and {5}. An analogous procedure leads to the situation in Figure 3.5.

Now we are almost done. In our backward analysis we have to determine the preimage
of the interval]5, 6[. Fortunately, this is the interval]4, 5[which is already contained
in our previous intermediate result. So after inserting the edge between these two
nodes we obtain the final result from Figure 3.6.

Note that the number 3 has a behaviour which is unique among all others under
consideration: the target interval can be reached by increasing it twice by one and
subsequent doubling.

We reached our goal and reduced the infinite game to a finite one, so we can apply an
arbitrary shortest path algorithm on the finite game, which leads to the policy shown
in Figure 3.7 (black arrows indicate the optimal strategy). If we transform this result
back to the original game we obtain as the optimal strategy doubling each number in
[4, 5] and increasing every other number by one.

Let us take a closer look to our approach. We write x
+1
−−→g y and x

·2
−→g y resp. if x

8

[8, 10]

[7, 8[

[4, 5]

[6, 7[

[3, 4]

1

2

1

1

Figure 3.2: Second Stage

[8, 10]

[6, 7[[7, 8[

]4, 5[

]3, 4[{3}

{4} {5}

1

1

2

1 1

1

2

2

Figure 3.3: Situation after Treating 4

9

3 Example

[8, 10]

[5, 6[[6, 7[[7, 8[

]4, 5[

]3, 4[{3}

{4} {5}

1 1

1

2

1 1

1

2

2

Figure 3.4: Third Stage

[8, 10]

]7, 8[

]4, 5[

]6, 7[

]3, 4[

]5, 6[

{3}

{4} {5} {6}

{7}

1

2

1

1

1

1

1

2

1

1

1

2

Figure 3.5: Situation after Treating 5

10

[8, 10]

]7, 8[

]4, 5[

]6, 7[

]3, 4[

]5, 6[

{3}

{4} {5} {6}

{7}

1

2

1

1

1

1

1

2

1

1

1

2

1

Figure 3.6: Final Stage

[8, 10]

]7, 8[

]4, 5[

]6, 7[

]3, 4[

]5, 6[

{3}

{4} {5} {6}

{7}

1

2

1

1

1

1

1

2

1

1

1

2

1

Figure 3.7: Strategy

11

3 Example

can be transformed into y by increasing it by one resp. doubling it according to the

rules. For two sets X and Y from the nodes’ captions of Figure 3.6 we write X
+1
−−→b Y

and X
·2
−→b Y with analogous meanings (so we have for example {4}

·2
−→g [8, 10] and

]5, 6[
+1
−−→b]6, 7[). Then the following properties hold:

• x
+1
−−→g y ∧ x ∈ X ⇒ ∃Y : y ∈ Y ∧X

+1
−−→b Y

• x
·2
−→g y ∧ x ∈ X ⇒ ∃Y : y ∈ Y ∧X

·2
−→b Y

• X
+1
−−→b Y ∧X ∋ x⇒ ∃y : Y ∋ y ∧ x

+1
−−→g y

• X
·2
−→b Y ∧X ∋ x⇒ ∃y : Y ∋ y ∧ x

·2
−→g y

This means that the original game and the game from Figure 3.6 have an equivalent
behaviour in a certain sense. We will state this more precisely in the next chapter.

12

Chapter 4

Set-labelled Graphs and

Bisimulations

In this chapter we introduce two basic concepts: Set-labelled graphs
and bisimulations between set-labelled graphs. Set-labelled graphs cor-
respond to labelled transition systems without node labels. For later
running time considerations we present a data structure for set-labelled
graphs which allows the execution of basic operations in optimal time.
Dynamically equivalent behaviour of two set-labelled graphs can be wit-
nessed by a bisimulation between them. A special case of bisimulations
are autobisimulations, i.e., bisimulations between a set-labelled graph
and itself. They can be used to identify nodes with equivalent dynamic
behaviour.

4.1 Set-labelled Graphs

4.1.1 Basic Definitions

A basic ingredient of our game from Chapter 3 was a labelled graph. In the further
course it turns we will see that one label per edge (as in our introductory example)

4 Set-labelled Graphs and Bisimulations

can be insufficient, so we will allow multiple labels on an edge. This is captured by
the following definition:

Definition 4.1.1 Let G = (V,E) be a graph, M be an arbitrary nonempty set and
g : E → P(L)\∅ a mapping such that

⋃
(v,w)∈E

g(v, w) = L. Then the pair (G, g) is

called a set-labelled graph. g is called its labelling function and L its label set .

For an edge (x, y) ∈ E and a label ℓ ∈ L we may also write x
ℓ
−→g y if ℓ ∈ g(x, y)

holds. This writing corresponds to the usual notion for labelled transition systems.
In the context of set-labelled graphs L will always denote its label set. A labelled
graph is called uniquely labelled if |g(v, w)| = 1 holds for all edges (v, w). This
corresponds to conventional labelled graphs. A finitely labelled graph is a set-labelled
graph ((V,E), g) with the property |g(v, w)| < ∞ for all (v, w) ∈ E (note that this
does not imply |L| <∞ but the other way round).

Sometimes we want to restrict the edge set of a set labelled graph to edges with
a certain set of labels. So for a set labelled graph G = ((V,E), g) and an ℓ ∈ L
we introduce the ℓ-restricted graph Gℓ = ((Vℓ, Eℓ), gℓ) by Vℓ = V , Eℓ = {(u, v) ∈
E | g(u, v) = ℓ} and gℓ(u, v) = ℓ for all (u, v) ∈ Eℓ. For a node v ∈ V and an ℓ ∈ L

we define the set δ(v, ℓ) of ℓ-successors by δ(v, ℓ) =df {w | v
ℓ
−→g w}. The set gout(v)

of out-labels of a node v is defined by gout(v) =df {ℓ | δ(v, ℓ) 6= ∅}.

Contrary to traditional labelled graphs we do not have a unique labelling along a
walk in G. Therefore we have to deal with a set of labellings of a walk. So given a
labelled graph (G, g) and a walk w = w1w2 . . . wn in G we define the set of labellings
L(w) ⊆ L

∗

of w in G by ℓ1ℓ2 . . . ℓn−1 ∈ L(w) ⇔ ∀i ∈ {1 . . . n− 1} : ℓi ∈ g(wi, wi+1).
In the case of a uniquely labelled graph the set of labellings of a walk contains exactly
one element. Here we use the notation l(w) to denote the single element of L(w).

4.1.2 A Data Structure for Set-labelled Graphs

From an algorithmic point of view it is indispensable to have a suitable data structure
for set-labelled graphs at our disposal which enables us to carry out the needed oper-
ations asymptotically as fast as possible. Since the presented algorithms are run only
on finite set-labelled graphs (except possibly the construction of the quotient of an
infinite system as described in Definition 6.2.1, which is done by symbolic execution
as e.g. in [BBR04, HHW95, JKM98]) we restrict our discussion to finite set-labelled
graphs. In detail, we have the following requirements:

1. For a node v ∈ V and an edge label ℓ ∈ L, determine δ(v, ℓ) in Θ(|δ(v, ℓ)|) time.

14

4.1 Set-labelled Graphs

2. For a pair of nodes (v, w), determine g(v, w) in Θ(|g(v, w)|) time.

3. For an edge (v, w) ∈ E and an edge label ℓ ∈ L, remove the edge label ℓ from
g(v, w) in O(1) time. If g(v, w) = {ℓ} then (v, w) is also removed from E. In
the case ℓ /∈ g(v, w) the data structure remains unchanged.

4. Remove an edge (v, w) (together with its labels) from E in Θ(|g(v, w)|) time. If
(v, w) /∈ E holds the data structure remains unchanged.

5. Test the existence of an edge in O(1) time.

6. For a pair of nodes (v, w) and an edge label ℓ ∈ L, add ℓ to g(v, w) in O(1) time.
If (v, w) /∈ E holds then (v, w) is added to E afore. In the case ℓ ∈ g(v, w) no
changes are performed.

7. For a node v ∈ V , determine vE in O(|vE|) time.

Despite of Operation 4 the required running times are the best possible ones. Even
in the case of removing an edge together with its labels, the required running time
seems rather natural.

The Operations 1 - 5 and Operation 7 can be used for queries in algorithms and re-
finement operations (cf. Definition 5.2.1), whereas Operation 6 is suitable for building
up a data structure representing a set-labelled graph by successive adding of labelled
edges.

There are tools such as mCRL2 (see [CGK+13, GMvWU06, mCL]) or LTSA (details can
be found in [UCKM03, FUMK06, LTS]) which support some of the above-specified
operations. However, their main focus lies on verification of a system, so they do not
support explicitly Operations 3 and 4. Moreover, there are no remarks about the
running time of the supported operations. We will now construct a data structure
which fulfills all the above requirements.

Adjacency matrices support testing the existence of an edge in constant time (Op-
eration 5) and removing an edge (Operation 4) and can be modified to support Op-
eration 2 in the desired time. The other operations take longer time if we operate
on adjacency matrices. On the contrary, adjacency lists have drawbacks at these op-
erations but guarantee the other operations in the desired time. The proposed data
structure which we call a mixed representation combines both adjacency matrices and
adjacency lists. This will now be described in detail.

For the construction we assume w.l.o.g. that V = {0 . . . n− 1} and L = {0 . . . o− 1}
hold. Then the data structure consists of the following parts:

1. An n× o-array ∆ of doubly linked lists of integers.

15

4 Set-labelled Graphs and Bisimulations

2. An n× n-array Γ of doubly linked lists of integers.

3. An n× n× o-array Λ whose entries are triples of a boolean value, a pointer to
an element of a list in ∆ and a pointer to an element of a list in Γ.

4. An n-array Σ of doubly linked lists of integers.

5. An n× n-array Φ of tuples of integers and pointers to elements of a list in Σ.

The array ∆ contains at position (v, ℓ) the set δ(v, ℓ) as a duplicate-free doubly linked
list, so Operation 1 can be executed in the required time. Analogously, Γ contains at
position (v, w) a duplicate-free doubly linked list representing g(v, w), so Operation 2

can also be done in the required time. If v
ℓ
−→g w holds then the boolean value of

Λ[v][w][ℓ] is true, and the two pointers point to the respective list elements of ∆[v][ℓ]

and Γ[v][w]. Otherwise (i.e. if v
ℓ
−→g w does not hold) the Boolean value of Λ[v][w][ℓ]

is false, and both pointers are null. The doubly linked list Σ[v] contains all successors
of v (the update operations will be described later). So Operation 7 can be done with
the required running time. In the integer part Φ[v][w] we find |g(v, w)|. It equals
0 if (v, w) /∈ E, so testing whether (v, w) ∈ E (Operation 5) reduces to the test
Φ[v][w] 6= 0 which can be done in constant time. The pointer at Φ[v][w] points to the
list element with value w of the list Σ[v] if Φ[v][w] > 0 (i.e., if (v, w) ∈ E), and equals
null otherwise.

The remaining Operations 3, 4 and 6 are a little bit more elaborate:

Operation 3: First we look up the boolean value of Λ[v][w][ℓ] inO(1) time. If this
value equals false we are done. Otherwise we execute the following operations:

1. Decrement the integer part of Φ[v][w] by 1.

2. If the integer part of Φ[v][w] equals 0 then w is removed from Σ[v] and the
pointer of Φ[v][w] is set to null.

3. Delete from the list ∆[v][ℓ] the element with value w.

4. Delete from the list Γ[v][w] the element with value ℓ.

5. Set the boolean part of Λ[v][w][ℓ] to false and its two pointers to null.

Note that the deletion operations can be executed in constant time because we
have pointers to the respective elements of the doubly linked lists.

Operation 4: We set the integer part of Φ[v][w] to 0, remove w from Σ[v] and
set the pointer of Φ[v][w] to null. Then we iterate through the list Γ[v][w] and
execute for every value ℓ in this list Steps 3 - 5 of Operation 3 as described
above. Clearly, the required running time is kept.

16

4.1 Set-labelled Graphs

∆[v][ℓ] w
1

w
2 w w

4

Γ[v][w] ℓ
1 ℓ ℓ

3
ℓ
4

Λ[v][w][ℓ] true

Σ[v] w
1 w w

3
w

4

Φ k

v

w

Figure 4.1: Part of a Mixed Representation before Removing an Edge Label

Operation 6: First we look up the boolean value of Λ[v][w][ℓ] in O(1) time. If
this value equals true no further operations are necessary. Otherwise we proceed
as follows:

1. Increment Φ[v][w] by 1.

2. If Φ[v][w] equals 1 we add an element with value w to Σ[v] and set the
pointer of Φ[v][w] to this element.

3. Set the boolean part of Λ[v][w][ℓ] to true.

4. Add a new element with value w to ∆[v][ℓ] and let the ∆-pointer of
Λ[v][w][ℓ] point to this element.

5. Add a new element with value ℓ to Γ[v][w] and let the Γ-pointer of Λ[v][w][ℓ]
point to this element.

Obviously, all these operations can be executed in constant time.

17

4 Set-labelled Graphs and Bisimulations

∆[v][ℓ] w
1

w
2

w
4

Γ[v][w] ℓ
1

ℓ
3

ℓ
4

Λ[v][w][ℓ] false

Σ[v] w
1 w w

3
w

4

Φ k−1

v

w

Figure 4.2: Part of a Mixed Representation after Removing an Edge Label

We will demonstrate the execution of Operation 3 (removing a label from an edge)
graphically. Figure 4.1 shows part of a mixed representation, corresponding to the

representation of the transition v
ℓ
−→g w. The topmost list is the list ∆[v][ℓ] whereas

the second list corresponds to Γ[v][w]. In the middle we see the structure Λ[v][w][ℓ]
with the boolean value true and pointers to the respective elements of ∆[v][ℓ] and
Γ[v][w]. The subjacent list is Σ[v]. On the bottom we find the matrix Φ with the
integer entry k at position Φ[v][w] and a pointer to the element w in the list Σ[v]. After
removing label ℓ from the edge (v, w) we obtain the situation depicted in Figure 4.2.
From list ∆[v][ℓ] the element with value w is removed, and from list Γ[v][w] the element
with value ℓ. In Λ[v][w][ℓ] the boolean value is set to false, and both pointers become
null. Finally, the value Φ[v][w] is decremented by one to k− 1. Here we assumed that
k > 1 holds, otherwise we have to remove the element with value w from Σ[v] and
to set the pointer at Φ[v][w] to null. Analogously one can visualise Operation 6, the
addition of a label to an edge.

18

4.2 Bisimulations for Set-labelled Graphs

The main drawback of this data structure is its space requirement of Θ(n2o). This
is an illustration of the classical space-time tradeoff, similar to the advantages and
disadvantages of adjacency matrices and adjacency lists.

4.2 Bisimulations for Set-labelled Graphs

We will now introduce one of the main concepts of this thesis. The term ‘bisim-
ulation’ has become general knowledge and it is hard to name its inventor. In
the bibliography of the DBLP (see [DBL]) the oldest listed item with bisimula-
tion in its title is dated from 1985 ([Cas85]). But there are several predecessors
which use the same or a very similar construction, sometimes under others names
like ‘behavioural equivalence relation’, ‘observational equivalence’ or ‘strong congru-
ence’ (see [BR83, KS90, Mil80, MM79, Plo76]) in the context of process algebra or
‘automaton transformation’ ([Myh57, Ner58]) in the context of automata theory.

Definition 4.2.1 Let G1 = ((V1, E1), g1) and G2 = ((V2, E2), g2) be two set-labelled
graphs with the same label set L. A both left- and right-total relation B ⊆ V1×V2 is
called a bisimulation between G1 and G2 if the following properties hold for all ℓ ∈ L:

1. ∀x1, y1, x2 : x1
ℓ
−→g1 y1 ∧ x1Bx2 ⇒ ∃y2 : x2

ℓ
−→g2 y2 ∧ y1By2

2. ∀x2, y2, x1 : x2
ℓ
−→g2 y2 ∧ x2B

◦x1 ⇒ ∃y1 : x1
ℓ
−→g1 y1 ∧ y2B

◦y1

So the relation ∈ is a bisimulation between the original game and the game from
Depiction 3.6 from the previous section.

An relation algebraic equivalent definition is that B◦;
ℓ
−→g1⊆

ℓ
−→g2 ;B

◦ and B;
ℓ
−→g2⊆

ℓ
−→g1

;B hold for all ℓ ∈ L. We will revisit this in Chapter 11 if we give an algebraic approach
to bisimulations.

Two set-labelled graphs G1 and G2 are called bisimilar if there is a bisimulation
between G1 and G2. Because we want to investigate equivalent states of a system
we are interested in bisimulations between a set-labelled graph and itself. Such a
bisimulations is called an autobisimulation. An autobisimulation which is also an
equivalence relation is called a bisimulation equivalence.

Often the nodes of a set labelled graph belong to different classes, so in our example
we had numbers in the target interval and numbers outside of it. It this case it seems
reasonable to consider bisimulation equivalences which relate only nodes of the same
classes. So let ((V,E), g) be a set labelled graph and V = (Vi)i∈I be a partition of
its node set. We say that an autobisimulation B respects V if for all v1, v2 ∈ V the

19

4 Set-labelled Graphs and Bisimulations

implication v1Bv2 ⇒ ∃i ∈ I : v1 ∈ Vi ∧ v2 ∈ Vi holds. An equivalent formulation is
that every Vi is the union of suitable equivalence classes of B.

The set of bisimulations respecting a fixed partition is closed under union and taking
the converse. Moreover, the identity relation is an autobisimulation respecting every
partition. So there is a greatest (with respect to the subset order) bisimulation equiv-
alence respecting a given partition, namely the union of all bisimulation equivalences
which respect this partition. Often we will need as a subroutine in our algorithms the
computation of this bisimulation equivalence or of its equivalence classes. For this
task, there is an efficient algorithm, developed by Paige and Tarjan (see [PT] and the
work relying hereon in [Fer90]) which computes the equivalence classes of the coarsest
bisimulation equivalence in O(|E| · log(|V |) · |L|) time.

One key point of the algorithms from [PT, Fer90] and related algorithms is the fact
that the equivalence classes of a bisimulation form a stable partition. Formally this
means the following:

Definition 4.2.2 Let G = ((V,E), g) be a set labelled graph. A partition V =
{Vi | i ∈ I} of V is called stable with respect to G if for every ℓ ∈ L and every Vi ∈ V
the set of ℓ-predecessors of Vi, i.e. the set {u ∈ V |uEℓ ∩ Vi 6= ∅}, can be written as
the union

⋃
j∈J

Vj for a suitable subset J ⊆ I.

The algorithms for computing the coarsest bisimulation for a set labelled graph re-
specting a given partition proceed by refining the initially given partition until a stable
partition is obtained. The crucial point is the following lemma:

Lemma 4.2.1 Let G = ((V,E), g) be a set labelled graph and B a bisimulation equiv-
alence for G. Then V/B forms a stable partition of V with respect to G.

In particular, this means that for every (v/B) ∈ V/B every node v′ ∈ (v/B) has the
same predecessors under every edge label. The algorithms from [PT, Fer90] are refine-
ments of a partitioning algorithm given e.g. in [AHU74] and are based on clever main-
taining the sets in intermediate results. The reader may also compare the construction
of the quotient in our introductory example with the algorithm from [AHU74] and as-
sure himself that the obtained partition is indeed a stable one (the initial partition was
{[3, 8[, [8, 10]}, and the finally obtained one {{3},]3, 4[, {4},]4, 5[, {5},]5, 6[, {6},]6, 7[,
{7},]7, 8[, [8, 10]}).

20

Chapter 5

Models

This short chapter introduces the idea of a model, a generalisation of the
structure we used in our example game. We motivate the definition and
introduce some basic notions and operations we will use in the sequel.
Among them we introduce the important idea of model refinement.

5.1 Models

If we take a look at our example from Chapter 3 we observe that set-labelled graphs
are not a suitable tool for its description. The problem is that this concept lacks the
possibility to define the target set of our example, or more generally, all nodes are
treated as equal. This motivates the following definition of a model:

Definition 5.1.1 A model M is a pair M = (G, a) where G = ((V,E), g) is a set-
labelled graph and a : V → A is the node labelling function of M . G is called the
associated set-labelled graph of M .

The node labelling function can be used for different purposes. So it can be used to
model start- and/or finite states of a system as in finite automata, or it can describe a
certain kind of import at a node. Also Kripke structures can be seen as models whose
node labelling functions describe mappings from the node set into a set of atomic

5 Models

propositions, cf. e.g. [CGP01]. The combination of two or more such meanings can
be achieved by using suitable tuples as image of a. Of course, if one is not really
interested in the labelling of the node or edge set one will choose a dummy function
and ignore it at later stages of reasoning about the model. We will do so in Chapter 10
where we reason about stochastic games. In cases where one wants to describe costs
in a network or labelled graph the associated set-labelled graph of the model under
consideration is often a uniquely labelled one. So a model with a uniquely labelled
associated graph is also called uniquely labelled.

In some cases we will use for A the power set P(X) of a certain set X . Then every
x ∈ X induces a subset Vx ⊆ V of the node set, given by Vx =df {v ∈ V |x ∈ a(v)}.
Here we often will use only x instead of Vx, especially if x is denoted by an uppercase
letter (cf. Chapter 7).

Analogously to graphs we define isomorphism between models. So two models M1 =
(((V1, E1), g1), a1) and M2 = (((V2, E2), g2), a2) are isomorphic if there is a bijection
f : V1 → V2 with the following properties:

1. ∀v1, w1 ∈ V1 : (v1, w1) ∈ E1 ⇔ (f(v1), f(w1)) ∈ E2

2. ∀(v1, w1) ∈ E1 : g1(v1, w1) = g2(f(v1), f(w1))

3. ∀v1 ∈ V1 : a1(v1) = a2(f(v1))

Point 1 stipulates that the graphs of the two models are isomorphic. Point 2 and 3
require that images under f of edges and nodes, resp., bear the same label. Note that
due to bijectivity of f the above conditions are equivalent to the following ones:

1. ∀v2, w2 ∈ V2 : (v2, w2) ∈ E2 ⇔ (f◦(v2), f
◦(w2)) ∈ E1

2. ∀(v2, w2) ∈ E2 : g2(v2, w2) = g1(f
◦(v2), f

◦(w2))

3. ∀v2 ∈ V2 : a2(v2) = a1(f
◦(v2))

5.2 Model Refinement and Submodels

In our introducing example we had the task to construct a policy for a given system by
removing undesired transitions. As an additional possibility we might remove some
labels from a transition. This procedure is captured in the context of models in the
following definition:

Definition 5.2.1 Given two models M1 = (((V1, E1), g1), a1) and M2 = (((V2, E2),
g2), a2) we say that M2 is a submodel of M1 or that M2 refines M1 (also written
M2 �M1) if the following conditions are fulfilled:

22

5.2 Model Refinement and Submodels

1. V2 = V1

2. a2 = a1

3. E2 ⊆ E1

4. g2(v, w) ⊆ g1|E2
(v, w)

The set of all submodels of a model M is denoted by Sub(M). It is straightforward
to see that � is a partial order on Sub(M) and that (Sub(M),�) forms a complete
lattice.

23

Chapter 6

Models and Bisimulations

In this chapter we investigate the interplay between bisimulations and
models. First, we will extend the idea of bisimulations from set labelled
graphs to models. Subsequently, we introduce autobisimulations, i.e.,
bisimulations between a model and itself, and investigate how a model
with equivalent dynamic behaviour, the so-called quotient, can be con-
structed using an autobisimulation equivalence. As a kind of inverse of
this operation we define the expansion operation. Finally, we introduce a
generic method for obtaining a refinement of a model using a refinement
of a quotient of it.

6.1 Bisimulations for Models

If we take a look back at our introductory example we see that no number of the
target interval was related to a non-target interval of the reduced system, and vice
versa, so in an abstract way only nodes with the same label are related to each other.
This additional constraint to general bisimulations for set labelled graphs gives rise
to the following definition:

Definition 6.1.1 Let M1 = (((V1, E1), g1), a1) and M2 = (((V2, E2), g2), a2) be two
models. A left- and right-total relation B ⊆ V1 × V2 is a bisimulation between M1

and M2 if the following holds:

6 Models and Bisimulations

1. B is a bisimulation between ((V1, E1), g1) and ((V2, E2), g2)

2. ∀v1 ∈ V1, v2 ∈ V2 : v1Bv2 ⇒ a1(v1) = a2(v2)

The purpose of Requirement 1 is obvious. Item 2 stipulates that only nodes with
the same node label values are related to each other. Analogously to the case of
bisimulations we say that two models M1 and M2 are bisimilar if a bisimulation
between them exists. As a symbol for the bisimilarity relation between models we
use the sign ∼. Clearly, ∼ is an equivalence relation. This follows easily from the
properties of bisimulations. We also write M1 ∼B M2 if B is a bisimulation between
M1 and M2 and call B a bisimulation witness for M1 and M2.

Bisimilar models have the same dynamic behaviour with respect to their edge and
node labels. This is formally stated in the next lemma:

Lemma 6.1.1 Let M1 = (((V1, E1), g1), a1) and M2 = (((V2, E2), g2), a2) be two
models with M1 ∼B M2. Let w1 = v11v

2
1v

3
1 . . . v

n
1 be a walk in (V1, E1) and consider an

arbitrary l1 ∈ L1(w1). Then for every v12 with v11Bv12 there is a walk w2 = v12v
2
2v

3
2 . . . v

n
2

in (V2, E2) with the following properties:

1. l1 ∈ L2(w2)

2. a1(v
m
1) = a2(v

m
2) for all m ∈ {1 . . . n} and

3. vm1 Bvm2 for all m ∈ {1 . . . n}.

Proof: Let M1, M2 and B be as above, and let l1 = ℓ11ℓ
2
1 . . . ℓ

n−1
1 . Then it suffices for

Part 1 to show ℓi1 ∈ g2(v
i
2, v

i+1
2) for all i ∈ {1 . . . n− 1}. This can be shown together

with the other two claims by simple induction over n.

For n = 1 let v11v
2
2 be a walk in (V1, E1) with ℓ11 ∈ L1(v

1
1v

2
1) and v12 ∈ V2 a node

with v11Bv12 . Since B is a bisimulation there is a node v22 in V2 such that v21Bv22 and

v12
ℓ11−→g2 v22 hold. Due to Requirement 2 of Definition 6.1.1 we have also a1(v

1
1) =

a2(v
1
2) and a1(v

2
1) = a2(v

2
2).

Consider now a walk w1 = v11v
2
1v

3
1 . . . v

n
1 v

n+1
1 in M1 and an l1 = ℓ11ℓ

2
1 . . . ℓ

n
1 ∈ L1(w1).

Due to the induction hypothesis there is a walk w2 = v12v
2
2v

3
2 . . . v

n
2 in M2 with

ℓ11ℓ
2
1 . . . ℓ

n−1
1 ∈ L2(w2) for all m ∈ {1 . . . n − 1} and a1(v

m
1) = a2(v

m
2) for all m ∈

{1 . . . n}; so it remains to show that there is a node vn+1
2 with vn2

ℓn1−→g2 vn+1
2 and

a1(v
n+1
1) = a2(v

n+1
2). The existence of a node with the first property follows from

the left-totality of a bisimulation and Part 1 of Definition 4.2.1. The second property
is a consequence of Part 2 of Definition 6.1.1. �

26

6.2 Autobisimulations and Quotient Operation

Remark: This Lemma fixes an error in Lemma 3.3. in [Glü11]. There, in an anal-
ogous context, the equality g1(v

i
1, v

i+1
1) = g2(v

i
2, v

i+1
2) is claimed. A counterexample

is provided by the two bisimilar models in Figure 6.2: the edge ({a, b}, {a, b}) in the
right model is labelled by {1, 2} whereas there is no edge at all with this label in the
left model. �

An immediate consequence is the following corollary which follows from the fact that
∼ is an equivalence relation and hence in particular symmetric:

Corollary 6.1.1 Let M1 = (((V1, E1), g1), a1) and M2 = (((V2, E2), g2), a2) be two
models with M1 ∼B M2 and consider two nodes v11 ∈ V1 and v12 ∈ V2 with v11Bv12 .
Then a walk v11v

2
1v

3
1 . . . v

n
1 in M1 with edge label sequence ℓ1ℓ2 . . . ℓn−1 and node label

sequence a1a2a3 . . . an exists iff there is a walk v12v
2
2v

3
2 . . . v

n
2 in M2 with edge label

sequence ℓ1ℓ2 . . . ℓn−1 and node label sequence a1a2a3 . . . an.

6.2 Autobisimulations and Quotient Operation

A bisimulation between a model M and itself is called an autobisimulation for M .
An autobisimulation on a model M which is also an equivalence relation is called a
bisimulation equivalence for M .

A bisimulation equivalence for a model (((V,E), g), a) is a bisimulation equivalence
for the set labelled graph ((V,E), g) which respects the partition of V induced by the
node labelling function a. This follows immediately from Part 2 of Definition 6.1.1.

Bisimulation equivalences on a model relate in a certain sense nodes with equivalent
behaviour. This means that the equivalence class of a node can serve as a repre-
sentative for the behaviour of all its nodes. This idea was already exploited in the
seminal papers [Myh57] and [Ner58] and is also a welcome tool in model checking, cf.
e.g. [BK08]. The formal idea behind this is the quotient construction:

Definition 6.2.1 Let M = (((V,E), g), a) be a model and B a bisimulation equiva-
lence for M . The quotient M/B of M by B is the model M/B = (((V/B,E/B), g/B),
a/B), defined as follows:

1. (v/B,w/B) ∈ E/B ⇔ ∃v′ ∈ v/B,w′ ∈ w/B : (v′, w′) ∈ E

2. ℓ ∈ (g/B)(v/B,w/B)⇔ ∃v′ ∈ v/B,w′ ∈ w/B : ℓ ∈ g(v′, w′)

3. a/B(v/B) = a(v)

Note that a/B is well defined due to the fact that B relates only nodes with the same
value of a, as stated in Requirements 2 of Definition 6.1.1. In our example a quotient
is shown in Figure 3.6.

27

6 Models and Bisimulations

It is a well known fact that a labelled transition system and an arbitrary one of its
quotients are bisimilar. This carries over to models in an easy way; for the sake
completeness we give it here as a separate lemma together with its proof.

Lemma 6.2.1 Let M = (((V,E), g), a) be a model and B a bisimulation equivalence
for M . Then M and M/B are bisimilar, and ∈ is a bisimulation between M and
M/B.

Proof: First we show that ∈ is a bisimulation between ((V,E), g) and ((V/B,E/B),
g/B) (i.e. Part 1 of Definition 6.1.1). Therefore let x, y ∈ V , X ∈ V/B and ℓ ∈ L be

arbitrary with x
ℓ
−→g y and x ∈ X . We claim that Y := y/B fulfills X

ℓ
−→g/B Y and

y ∈ Y . First, y ∈ Y is trivial. For X
ℓ
−→g/B Y we have to show that (X,Y) ∈ E/B

and ℓ ∈ (g/B)(X,Y) hold. The first property holds due to part 1 of Definition 6.2.1,
and the second property because of part 2 of the same definition.

Conversely, assume X,Y ∈ V/B, x ∈ V and ℓ ∈ L/B with X
ℓ
−→g/B Y and X ∋ x.

Then we have to show the existence of a y with Y ∋ y and x
ℓ
−→g y. The Parts 1

and 2 of Definition 6.2.1 show the existence of an x′ ∈ X and y′ ∈ Y with x′ ℓ
−→g y′.

By definition of the quotient we have x′Bx, and since B is a bisimulation this implies

the existence of a y with x
ℓ
−→g y and y′By, which in particular means Y ∋ y. So ∈ is

a bisimulation between ((V,E), g) and ((V/B,E/B), g/B).

For the rest of Definition 6.1.1 assume x ∈ V and X ∈ V/B with x ∈ X . By Part 3
of Definition 6.2.1 we have (a/B)(X) = a(x), so Part 2 of Definition 6.1.1 is satisfied.
�

An important property is the compatibility of bisimulation equivalence and the preim-
age operator on equivalence classes. This means informally that the preimage operator
distributes over the union of equivalence classes. A formal statement about this is
the next theorem:

Theorem 6.2.1 Let G = (((V,E), g, a)) be a model and B a bisimulation equivalence
for G. Consider now two arbitrary subsets (V/B)′ ⊆ (V/B) and (V/B)′′ ⊆ (V/B) of
V/B and an arbitrary ℓ ∈ L. Then the following equalities hold:

1. Eℓ(
⋃
(V/B)′) =

⋃
(E/B)ℓ(V/B)′

2. Eℓ((
⋃
(V/B)′) ∩ (

⋃
(V/B)′′)) =

⋃
(E/B)ℓ((V/B)′ ∩ (V/B)′′)

Remark: Remember the writing conventions for the preimage and the union of set
families from Chapter 2. �

28

6.2 Autobisimulations and Quotient Operation

Before we prove this theorem we will visualise its claim. In the upper left part of
Figure 6.1 the partition induced by a bisimulation equivalence is symbolised by dashed
lines. The light grey area in this part indicates the union of some of these equivalence
classes (corresponding to the expression

⋃
(V/B)′ in the first item of Theorem 6.2.1).

Now we can determine the preimage of the light grey area in two ways: First, we can
forget about the equivalence classes and compute the preimage directly by evaluating
the term Eℓ(

⋃
(V/B)′) (this is shown in the lower left part; the thin arrows stand

for the relevant part of the relation Eℓ). Second, we can compute the preimages
of all equivalence classes in (V/B)′ under (E/B)ℓ, e.g., evaluating the expression⋃
(E/B)ℓ(V/B)′ (as in the upper right part; (E/B)ℓ is represented by thick arrows).

Clearly, these two possibilities lead to the same result (the lower right part). The
second item of Theorem 6.2.1 has an analogous meaning.

Proof: We begin with the first equality.
‘⊆’: Consider an arbitrary fixed u ∈ Eℓ(

⋃
(V/B)′). Then there is a (v′/B) ∈ (V/B)′

and a v ∈ (v′/B) such that u
ℓ
−→E v holds. Because of u ∈ (u/B) (remember that B is

an equivalence) and v ∈ (v′/B) we have (u/B)
ℓ
−→E/B (v′/B). So (u/B) is an element

of the preimage of (v′/B) under (E/B)ℓ and hence contained in
⋃
(E/B)ℓ(V/B)′.

‘⊇’: Let u ∈
⋃
(E/B)ℓ(V/B)′ be arbitrarily chosen. Then there is a (u′/B) with

u ∈ (u′/B) and a (v′/B) ∈ (V/B)′ with (u′/B)
ℓ
−→(E/B) (v′/B). Because B is an

equivalence we have even (u′/B) = (u/B). Due to Lemma 6.2.1 there is a v ∈ (v′/B)

such that u
ℓ
−→E v holds. Herefrom the claim follows easily.

Let us now turn to the second equality. First we take a look at the left side and argue
as follows:

u ∈ Eℓ((
⋃
(V/B)′) ∩ (

⋃
(V/B)′′))⇔

{ definition of the preimage }

∃v ∈ ((
⋃
(V/B)′) ∩ (

⋃
(V/B)′′)) : u

ℓ
−→E v ⇔

{ set theory }

∃v′ : (v′/B) ∈ (V/B)′ ∧ (v′/B) ∈ (V/B)′′ ∧ v ∈ (v′/B) ∧ u
ℓ
−→E v ⇔

{ B is an equivalence }

∃v : (v/B) ∈ (V/B)′ ∧ (v/B) ∈ (V/B)′′ ∧ u
ℓ
−→E v (1)

For the right side we do the following argumentation:

u ∈
⋃
(E/B)ℓ((V/B)′ ∩ (V/B)′′)⇔

{ set theory }
∃(u′/B) ∈

⋃
(E/B)ℓ((V/B)′ ∩ (V/B)′′) : u ∈ (u′/B)⇔

{ B is an equivalence }
(u/B) ∈ (E/B)ℓ((V/B)′ ∩ (V/B)′′)⇔
{ definition of the preimage }

29

6 Models and Bisimulations

∃(v/B) : (v/B) ∈ (V/B)′ ∧ (v/B) ∈ (V/B)′′ ∧ (u/B)
ℓ
−→E/B (v/B)⇔

{ definition of the quotient }

∃v : (v/B) ∈ (V/B)′ ∧ (v/B) ∈ (V/B)′′ ∧ (u/B)
ℓ
−→E/B (v/B) (2)

So it remains to show the equivalence of (1) and (2) (this is not totally trivial since
the v’s are bounded by quantifiers and need not be the same). Clearly, (1) implies
(2) due to the definition of the quotient (choose for the v from (2) the same v as in

(1)). From (2), we know by Lemma 6.2.1 the existence of a v′ ∈ (v/B) with u
ℓ
−→E v′.

This v′ can be chosen for the v from (1). �

Remark: Clearly, Part 1 of Theorem 6.2.1 follows from Part 2 of the same theorem
if we choose two identical subsets of V/B. We gave a separate proof which enlightens
the connections between a labelled graph and its node on the one side and one of its
quotients and the equivalence classes on the other side (the proof of Part 2 remains
very formal). �

A technically annoying aspect of the quotient is that the quotient of a uniquely labelled
model need not be a uniquely labelled again. As an example we consider the model
M = (((V,E), g), a) with V = {a, b, c}, E = {(a, a), (a, b), (b, a), (b, b), (a, c), (b, c)},
g(a, a) = g(b, b) = {1}, g(a, b) = g(b, a) = {2}, g(a, c) = g(b, c) = {3}, a(a) = a(b) =
tr and a(c) = fin. This model is depicted in the left part of Figure 6.2. As drawing
convention, nodes with the node label fin are doubly surrounded, those with node
label tr are simply surrounded.

However, the relation B = {(a, a), (a, b), (b, a), (b, b), (c, c)} is a bisimulation equiva-
lence for M . The resulting quotient M/B is depicted in the right part of Figure 6.2.
But this is not a uniquely labelled model, since the loop ({a, b}, {a, b}) carries the
label {1, 2}. So the construction in our introductory example was guided by a little
bit of luck since we did not run into this problem.

As shown above, the label sets of an edge (v, w) and the edge (v/B,w/B) in a quotient
are in general not equal, but at least there is a subset relation between them as stated
in the following lemma:

Lemma 6.2.2 Let M = (((V,E), g, a)) be a model and B a bisimulation equivalence
for M . Then for every (v, w) ∈ E the set inclusion g(v, w) ⊆ (g/B)(v/B,w/B) holds.

Proof: Let (v, w) ∈ E be arbitrarily chosen and fix an arbitrary ℓ ∈ g(v, w). Then
we have v ∈ v/B and w ∈ w/B because B is an equivalence relation. By Part 1 of
Definition 6.2.1 we have (v/B,w/B) ∈ E/B. Again due to v ∈ v/B and w ∈ w/B
and Part 2 of Definition 6.2.1 we obtain ℓ ∈ (g/B)(v/B,w/B). �

The first part of this proof shows also the following corollary:

30

6.2 Autobisimulations and Quotient Operation

pointwise
evaluation

set-valued
evaluation on

equivalence
classes

union of
set-valued
preimages

final
result

Figure 6.1: Two ways for computing set valued preimages

31

6 Models and Bisimulations

c

a b

{3} {3
}

{2}

{2}

{1} {1}

{c}

{a, b}

{
3}

{1, 2}

Figure 6.2: A uniquely labelled model (left) and one of its quotients (right)

Corollary 6.2.1 Let M = (((V,E), g, a)) be a model and B a bisimulation equiva-
lence for M . Then for all v, w ∈ V the implication (v, w) ∈ E ⇒ (v/B,w/B) ∈ E/B
holds.

6.3 Expansion Operation

The next step in our example was to generate a policy (which means a submodel)
for the original system from a policy for the shrunken one. This will be done by the
expansion operation:

Definition 6.3.1 Let M = (((V,E), g), a) be a model, B a bisimulation equivalence
for M and (M/B)′ = ((((V/B)′, (E/B)′), (g/B)′), (a/B)′) a submodel of M/B. Then
we define the expansion (M/B)′\B = (((V ′, E′), g′), a′) of (M/B)′ by B as follows:

1. V ′ = V

2. (v, w) ∈ E′ ⇔ (v, w) ∈ E ∧ (v/B,w/B) ∈ (E/B)′∧∃ℓ : ℓ ∈ (g/B)′(v/B,w/B)∧
ℓ ∈ g(v, w)

3. ℓ ∈ g′(v, w)⇔ ℓ ∈ g(v, w) ∧ ℓ ∈ (g/B)′(v/B,w/B)

4. a′ = a

As operation symbol for the expansion we choose \ since it is a kind of inverse op-
eration of the quotient / (see also Theorem 6.3.2). An immediate conclusion is that
under the above circumstances the expansion (M/B)′\B is a submodel of M . A more
interesting and important fact is that the expansion is bisimilar to the submodel it is
built from:

32

6.3 Expansion Operation

M

a

b

c

d

{1}

{1}

{1}
{1
}

M/B

ab cd
{1}

M ′

a

b

c

d

{1}

{1}

Figure 6.3: A model (left), a quotient (middle) and a possible expansion (right)

Theorem 6.3.1 Let M = (((V,E), g), a) be a model, B a bisimulation equivalence
for M and (M/B)′ = ((((V/B)′, (E/B)′), (g/B)′), (a/B)′) a submodel of M/B. Then
(M/B)′ and (M/B)′\B =df (((V ′, E′), g′), a′) are bisimilar.

Proof: We claim that ∋ is a bisimulation between (M/B)′ and (M/B)′\B.

So consider first arbitrary v, w ∈ V and ℓ with v
ℓ
−→g′ w. This means in particular

(v, w) ∈ E′, which implies (v/B,w/B) ∈ E′ (Point 2 of Definition 6.3.1). On the
other hand,we have ℓ ∈ g′(v, w) and hence ℓ ∈ (g/B)′(v/B,w/B). Together this yields

v/B
ℓ
−→(g/B)′ w/B, and because of v ∈ v/B and w ∈ w/B Item 1 of Definition 4.2.1

is fulfilled.

Conversely, let v/B,w/B ∈ (V/B)′ and ℓ be arbitrary with v/B
ℓ
−→(g/B)′ w/B. In

particular, this means also v/B
ℓ
−→(g/B) w/B. Now choose an arbitrary v′ ∈ v/B.

Analogously to the proof of Lemma 6.2.1 we can conclude the existence of w′ ∈ w/B

with v′
ℓ
−→g w′. Due to the definition of the expansion we have also v′

ℓ
−→g′ w′.

Since a′ = a holds Part 2 of Definition 6.1.1 is fulfilled for the same reasons as in
Lemma 6.2.1. �

Theorem 6.3.1 shows that the expansion of a submodel of a quotient and the submodel
of the quotient itself are bisimilar. In general there may be more than one submodel
of the original model which is bisimilar to a submodel of a quotient.

Figure 6.3 gives an example: in the middle we see the coarsest quotient M/B of the
model M at the left. The model M ′ is a submodel of M which is bisimilar to M/B,
as well as M itself (clearly, M/B is a submodel of itself). However, the expansion
has a special property which singles it out between all other submodels bisimilar to
the refined quotient: It is the greatest of all these submodels with respect to �. This
means that the expansion has an ‘equivalent’ dynamic behaviour as the submodel

33

6 Models and Bisimulations

it stems from and it has the maximal amount of ‘desired’ or ‘useful’ transitions.
In [GMS11] the expansion operation was designed as a submodel with these properties.
The next theorem states these considerations in an explicit manner:

Theorem 6.3.2 Let M = (((V,E), g), a) be a model, B a bisimulation equivalence
for M and (M/B)′ = ((((V/B)′, (E/B)′), (g/B)′), (a/B)′) a submodel of the quotient
M/B. Then (M/B)′\B =df (((V ′, E′), g′), a′) is the greatest submodel of M with
respect to � that is bisimilar to (M/B)′ with ∋ as bisimulation witness. In particular,
we have (M/B)\B = M .

Proof: By Theorem 6.3.1 (M/B)′\B ∼∋ (M/B)′ holds. So consider an arbi-
trary submodel M ′′ = (((V ′′, E′′), g′′), a′′) of M = (((V,E), g), a) such that M ′′ ∼∋

(M/B)′ holds. Let (v′′, w′′) ∈ E′′ be an arbitrary edge of M ′′ and choose an ar-
bitrary ℓ′′ ∈ g′′(v′′, w′′). First, because M ′′ is a submodel of M we also have
(v′′, w′′) ∈ E. Second, due to M ′′ ∼∋ (M/B)′ we have (v′′/B,w′′/B) ∈ (E/B)′

and ℓ′′ ∈ (g/B)′(v′′/B,w′′/B). According to the definition of the expansion this
leads to (v′′, w′′) ∈ E′ and ℓ′′ ∈ g′(v′′, w′′) which finishes the proof. �

We will use this characterisation in Chapter 12.

In some cases we will not only expand a submodel of the quotient but we will also do
a similar operation on node labels. This is the content of the following definition:

Definition 6.3.2 Let M = (((V,E), g), a) be a model, B a bisimulation equivalence
for M and b : (V/B) → L an arbitrary function. Then we define the expansion
(b\B) : V → L of b by (b\B)(v) = b(v/B).

Note that b\B is well-defined because the equivalence classes of B are disjoint.

34

Chapter 7

Control of Plant Automata

The first class of problems we will apply our approach to are so-called
plant automata, a concept closely related to Omega- and Büchi au-
tomata. We will see that they fit perfectly into our model-based frame-
work. Our goal is to control a plant automaton, i.e., construct a refine-
ment which guarantees a desired property. The properties we consider
are closely related to ideas from the area of temporal logic. First we show
how controllability can be decided using a quotient, and subsequently the
construction of a control policy via a quotient construction.

7.1 Basic Definitions

The concept of a plant automaton was introduced in [MPS95] by the following defi-
nition:

Definition 7.1.1 (cited from [MPS95]) A plant automaton is a tuple P = (Q,Σc, δ,
q0), where Q is a finite set of states, Σc is a set of controller commands, δ : Q×Σc → 2Q

is the transition function and q0 ∈ Q is an initial state.

In the further course of this paper there are some refinements and additional features
of this concept. Here we will give a definition which captures and unifies all these

7 Control of Plant Automata

s a b

c d e f

g h i j

α β

α

β

β

α β

α

β

α

β

α β

β β s

cg dh ei fj

a b

β

α
β

α

β

β

α β

α

Figure 7.1: A plant automaton (left) and its coarsest quotient (right)

ideas in our model framework. From now on the term ‘plant automaton’ is understood
in the sense of the following definition:

Definition 7.1.2 A plant automaton is a model P = (((V,E), g), a) with finite label
set L where a is a function a : V → 2H with H = {init, F}. Moreover, a has to satisfy
|{v | {init} ⊆ a(v)}| = 1.

Note that we now allow also an infinite number of states and nondeterminacy of
transitions. However, it turns out that the problem investigated in [MPS95] can be
handled also by our approach. Moreover, for an arbitrary plant automaton P and
every bisimulation equivalence B for P the quotient P/B is again a plant automaton
because the only real restriction |{v | a/B(v) = init}| = 1 is clearly fulfilled. As a
convention, we denote the unique node whose labelling contains init by s. In the
sequel we will consider traces of a plant automaton. A trace of a plant automaton is
an infinite walk in (V,E) with first node s.

As a convention for the graphic representation of a plant automaton we use double
surroundings for all nodes in F . An example is given in the left part of Figure 7.1.

The goal is to control a plant automaton, i.e., construct a submodel with certain
properties. We are not free to construct an arbitrary submodel but a submodel
induced by a so-called controller (see Definition 7.1.4). In this submodel we have
requirements to its traces. All its traces should fulfill properties with respect to F
similar to concepts from temporal logic, as for example ‘Every walk should infinitely

36

7.1 Basic Definitions

often visit a node with label F ’ or ‘Every walk should eventually visit a node with
label F ’. If we associate the nodes in F with ‘good’ states of a system we can thereby
describe that the refined automaton fulfills a desired safety (‘The automaton is always
in a good state’) or liveness property (‘Eventually something good will happen’). This
concept is well known from the area of constructing and verifying temporal system
properties as in [MP82, MP84, PV] and countless other publications.

We first define four predicates we will concentrate on:

Definition 7.1.3 Given a plant automaton P = (((V,E), g), a) we define for all
traces w of P the following family of predicates:

• (F,2)P (w)
def
⇔ all nodes of w bear label F

• (F,3)P (w)
def
⇔ w eventually visits a node with label F

• (F,32)P (w)
def
⇔ eventually all nodes of w bear label F

• (F,23)P (w)
def
⇔ infinitely many nodes of w bear label F

We will refer to these predicates also as control objectives. Clearly, the meanings
and notions of these four predicates are inspired by modal and temporal logic (see
e.g. [BA93, BAMP81, Pnu77]). In a slight notational abuse we say also that P has
property ω if all its traces fulfill the predicate ω.

Next we want to specify how we can control a plant automaton. This will be done
by choosing at every node v ∈ V a value l from the label set L such that from v
only edges with label l can be used. Intuitively, we have at every node a switch which
enables different transitions, and we have to choose one switch position for every node.
Formally, this is captured as follows:

Definition 7.1.4 Let P = (((V,E), g), a) be a plant automaton. Then a controller
for P is a function C : V → L. Given a plant automaton P and a controller C for P ,
the plant automaton PC = (((VC , EC), gC), aC) is defined by

1. VC = V and aC = a,

2. (vC , wC) ∈ EC ⇔ (vC , wC) ∈ E ∧C(v) ∈ g(vC , wC)

3. gC(vC , wC) = {C(vC)}

Clearly, PC is a submodel of P , so this fits our framework without problems. Since in
the sequel we want to reason about traces in a plant automaton we assume that for

37

7 Control of Plant Automata

every plant automaton under consideration and for every of its controllers every walk
starting in s can be extended to an infinite one. The purpose of this stipulation is
to avoid pathological cases where we have a universal quantifier over an empty set of
infinite walks. Obviously, the plant automata from Figure 7.1 fulfil this requirement.

Given a plant automaton P our goal is to construct a controller C such that PC fulfills
some control objective property ω. If no such controller exists, this should be shown.
This problem is referred to as the controller synthesis problem. We say that a plant
automaton P is controllable with respect to a property ω if there is a controller C such
that PC has the property ω.

7.2 Deciding Controllability

7.2.1 Controllable Predecessors

We first sketch a family of algorithms for the plant automaton synthesis problem by
means of fixpoint theory as for example in [TW91] or [MPS95]. These algorithms will
only decide whether the controller synthesis problem is solvable, i.e., we will not yet
show how to determine controllers. For this purpose we first introduce the concept of
the set of controllable predecessors of a subset V ′ ⊆ V . Intuitively, this is the set of
all nodes from which the plant automaton can be forced to enter some node in V ′ by
a suitable controller (compare also e.g. [KPP09, HMCJF00, DRDW06]). Formally,
this is defined as follows:

Definition 7.2.1 Let P = (((V,E), g), a) be a plant automaton and consider a
subset V ′ ⊆ V . The set π(V ′) of controllable predecessors is defined as π(V ′) = {u ∈

V | ∃ℓ ∃w : u
ℓ
−→E w ∧ ∀v : (u

ℓ
−→E v ⇒ v ∈ V ′)}.

Remark: The definition given in [MPS95] is slightly imprecise. There a state from
which no transition with some label is possible belongs automatically to the set of
controllable predecessors of every subset of V . This problem was fixed here by the
existential quantifier for w. �

In the left plant automaton of Figure 7.1 we have e.g. π({f}) = {e} because we can
force the automaton to choose the edge (e, f) if we use β as a control policy at node
e. Similarly we have π({a, j}) = {s, i} (we choose α as control policy for s and β
for i). However, note that π({c}) = ∅ because neither by choosing α or β as control
policy we can force a transition from any node to c.

The next lemma is about algebraic properties of the π-operator with respect to union
and intersection. In particular, Part 2 shows the isotony of the π-operator with respect
to set inclusion:

38

7.2 Deciding Controllability

Lemma 7.2.1 Let P = (((V,E), g), a) be a plant automaton, and let A,B ⊆ V be
arbitrary subsets of V . Then the following inclusions hold:

1. π(A) ⊆ π(A ∪B).

2. A ⊆ B ⇒ π(A) ⊆ π(B).

3. π(A ∩B) ⊆ π(A) ∩ π(B).

4. π(A ∪B) ⊇ π(A) ∪ π(B).

In general, the inclusions are strict.

Proof: First we show the inclusions; examples for strictness are given afterwards.
1: We fix an arbitrary u ∈ π(A) and reason as follows:

u ∈ π(A)⇔
{ definition of π }

∃ℓ ∃w ∀v : u
ℓ
−→E w ∧ (u

ℓ
−→E v ⇒ v ∈ A)⇒

{ set theory, logic }

∃ℓ ∃w ∀v : u
ℓ
−→E w ∧ (u

ℓ
−→E v ⇒ v ∈ (A ∪B))⇔

{ definition of π }
u ∈ π(A ∪B)

2: This follows directly from Part 1 due to B = A ∪B for A ⊆ B.

3: Due to Part 2 we have π(A ∩ B) ⊆ π(A) and π(A ∩ B) ⊆ π(B). Then the claim
follows by elementary set theory.

4: By Part 1 we have π(A) ⊆ π(A ∪ B) and π(B) ⊆ π(A ∪ B), so the claim follows
by elementary set theory.

The strictness can be demonstrated on the left plant automaton of Figure 7.1. For
Part 1 we note that π(∅) = ∅ ({s} = π(∅ ∪ {c, g}) holds. From this we obtain π(∅)
(π({c, g}) which provides an example for Part 2. The strict inclusion π({d} ∩ {f})
= π(∅) = ∅ ({e} = {c, e} ∩ {e, j} = π({d}) ∩ π({f}) shows strictness for Part 3.
Finally, we have π({c})∪ π({g}) = ∅ ({s} = π({c, g}) = π({c} ∪ {g}) for Part 4. �

7.2.2 Algorithms for Deciding Controllability

All presented algorithms determine the set W of winning nodes, i.e., nodes from
which a suitable refinement can enforce good behaviour in the sense of the predicate
ω under consideration. Then the synthesis problem is solvable iff q0 ∈ W holds, and

39

7 Control of Plant Automata

control objective fixpoint equation
(F,2) νW (F ∩ π(W))
(F,3) µW (F ∪ π(W))
(F,32) µWνH(π(H) ∩ (F ∪ π(W)))
(F,23) νWµH(π(H) ∪ (F ∩ π(W)))

Table 7.1: Control Objectives and Associated Fixpoint Equations

the synthesis can be done in a subsequent step. The set W can be characterised by
fixpoint equations, depending on ω, as shown in Table 7.1. For the derivation of these
equations consult again [TW91] or [MPS95].

For our purposes it will be useful to give explicit algorithms for the computation of
these fixpoints. These algorithms can be obtained easily for the cases (F,2) and
(F,3) by elementary fixpoint theory and lead to Algorithm 2 and 3 respectively.

Algorithm 2 Explicit Fixpoint Computation for the Case (F,2)

1: W0 ← V
2: i← 0
3: repeat
4: i← i+ 1
5: Wi ← F ∩ π(Wi−1)
6: until Wi = Wi−1

7: return Wi

Algorithm 3 Explicit Fixpoint Computation for the Case (F,3)

1: W0 ← ∅
2: i← 0
3: repeat
4: i← i+ 1
5: Wi ← F ∪ π(Wi−1)
6: until Wi = Wi−1

7: return Wi

Before introducing algorithms for the other properties we will take a closer look at
Algorithms 2 and 3.

First we observe in Algorithm 3 that the equality Wi+1 =
⋃
j≤i

πi(F) holds (this can be

40

7.2 Deciding Controllability

shown by simple induction). Symmetrically, in Algorithm 2 we haveWi+1 =
⋂
j≤i

πi(F).

So the sequence W0, W1, W2, . . . is increasing in Algorithm 3 with respect to set
inclusion, and decreasing in Algorithm 2. This ensures termination in the case of a
finite node set V . Moreover, in Algorithm 3 the set Wi+1 represents exactly the set of
states from which the plant automaton can be forced by a suitable controller to enter
a state with label F in at most i steps. Analogously, in Algorithm 2 the set Wi+1

corresponds to the states from which the plant automaton can be forced to enter only
states with label F for at least i steps.

The cases (F,32) and (F,23) are a little bit more complicated since we have to
solve nested fixpoint iterations. This explains the nested loops in Algorithm 4 and its
dual Algorithm 5.

Algorithm 4 Explicit Fixpoint Computation for the Case (F,32)

1: W0 ← ∅
2: repeat
3: H0 ← V
4: repeat
5: Hj+1 ← π(Hj) ∩ (F ∪ π(Wi))
6: until Hj+1 = Hj

7: Wi+1 = Hj

8: until Wi+1 = Wi

9: return Wi

Algorithm 5 Explicit Fixpoint Computation for the Case (F,23)

1: W0 ← V
2: repeat
3: H0 ← ∅
4: repeat
5: Hj+1 ← π(Hj) ∪ (F ∩ π(Wi))
6: until Hj+1 = Hj

7: Wi+1 = Hj

8: until Wi+1 = Wi

9: return Wi

We will give an exemplary execution of one of the algorithms immediately after the
proof of Theorem 7.2.1.

41

7 Control of Plant Automata

7.2.3 Compatibility with Bisimulation Equivalences

We will now show that our generic approach works for the plant automaton synthesis
problem. This is stated in the following theorem:

Theorem 7.2.1 Let P = (((V,E), g), a) be a plant automaton and B a bisimulation
equivalence for P . If (P/B) is controllable with respect to a property ω in Ω then P
is controllable with respect to ω.

Proof: The idea of the proof is to execute the Algorithms 2 - 5 in parallel both
on P and on P/B. For this purpose we denote the variables in the execution of
the respective algorithm on P by Wi, Yj and Hk, and in the execution on P/B by
(W/B)i, (Y/B)j and (H/B)k. During this parallel execution we show inductively that
in every step the equalities Wi =

⋃
(W/B)i, Yj =

⋃
(Y/B)j and Hk =

⋃
(H/B)k hold

(remember again the writing conventions for the union of set systems from Chapter 2).
Clearly, this holds for the initial assignment to variables indexed by 0 because of

⋃
∅

= ∅ and
⋃
(V/B) = V . Moreover, ∅ and V can be written as unions of suitable

subsets of V/B. So we may assume as an induction hypothesis that Wi =
⋃
(W/B)i,

Yj =
⋃
(Y/B)j and Hk =

⋃
(H/B)k hold before a new assignment, and that Wi, Yj

and Hk can be written as unions of suitable subsets of V/B.

If a simple assignment without new computation is done (Algorithm 4, Line 7 and
Algorithm 5, Line 7) this preserves the claim in a trivial way. However, a closer
look at the assignments with new computation (Algorithm 2, Line 5, Algorithm 3,
Line 5, Algorithm 4, Line 5 and Algorithm 5, Line 5) shows that they are all of
a form to which Theorem 6.2.1 is applicable. So after the execution of any new
assignment the variables fulfill the equalities Wi+1 =

⋃
(W/B)i+1, Yj+1 =

⋃
(Y/B)j+1

and Hk+1 =
⋃
(H/B)k+1. Hence at the end of the algorithm we have init ∈ Wfin ⇔

init ∈ ∪(W/B)fin (with the index fin we denote the sets returned by the respective
computations). �

We will illustrate both the function of Algorithm 4 and the previous proof on the plant
automaton in Figure 7.1 and its coarsest quotient in the same Figure in Table 7.2.

The left column represents the values during the execution on the original automaton,
the right one the execution on its coarsest quotient. The values of Wi and (W/B)i,
resp., denote the sets of nodes from which the automaton can be forced in i− 1 steps
to a node from which it can be forced to remain always in F . It is also instructive to
see that in every line of this table the identities Wi =

⋃
(W/B)i and Hj =

⋃
(H/B)j ,

resp., hold. This illustrates the idea behind the proof of Theorem 7.2.1.

42

7.2 Deciding Controllability

W0 = ∅ (W/B)0 = ∅
H0 = V (H/B)0 = V/B
H1 = {f, j} (H/B)1 = {fj}
H2 = {f, j} (H/B)2 = {fj}

W1 = {f, j} (W/B)1 = {fj}
H0 = V (H/B)0 = V/B
H1 = {e, f, i, j} (H/B)1 = {ei, fj}
H2 = {e, f, i, j} (H/B)2 = {ei, fj}

W2 = {e, f, i, j} (W/B)2 = {ei, fj}
H0 = V (H/B)0 = V/B
H1 = {d, e, f, h, i, j} (H/B)1 = {dh, ei, fj}
H2 = {d, e, f, h, i, j} (H/B)2 = {dh, ei, fj}

W3 = {d, e, f, h, i, j} (W/B)3 = {dh, ei, fj}
H0 = V (H/B)0 = V/B
H1 = {c, d, e, f, g, h, i, j} (H/B)1 = {cg, dh, ei, fj}
H2 = {c, d, e, f, g, h, i, j} (H/B)2 = {cg, dh, ei, fj}

W4 = {c, d, e, f, g, h, i, j} (W/B)4 = {cg, dh, ei, fj}
H0 = V (H/B)0 = V/B
H1 = {s, c, d, e, f, g, h, i, j} (H/B)1 = {s, cg, dh, ei, fj}
H2 = {s, c, d, e, f, g, h, i, j} (H/B)2 = {s, cg, dh, ei, fj}

W5 = {s, c, d, e, f, g, h, i, j} (W/B)5 = {s, cg, dh, ei, fj}
H0 = V (H/B)0 = V/B
H1 = {s, c, d, e, f, g, h, i, j} (H/B)1 = {s, cg, dh, ei, fj}
H2 = {s, c, d, e, f, g, h, i, j} (H/B)2 = {s, cg, dh, ei, fj}

W6 = {s, c, d, e, f, g, h, i, j} (W/B)6 = {s, cg, dh, ei, fj}

Table 7.2: Example Execution of Algorithm 4

43

7 Control of Plant Automata

7.3 Implementation Details

In Section 7.4 we will show that the computation of a controller can be done via a
bisimulation quotient (cf. also Algorithm 7 from Subsection 7.4.1). However, in order
to see whether this approach can lead to a speed-up we first take a look at how to
implement the actual computation of a controller.

7.3.1 Basic Computation of a Controller

In [MPS95] it is shown that Algorithms 2 - 5 are constructive in the sense that during
their execution a controller can be determined.

The construction can be done as follows:

• If the sequence of Wi’s is increasing with respect to set inclusion (as in Algo-
rithm 2 and Algorithm 5) proceed as follows: Every time a state q is added to
Wi for i ≥ 1 (i.e., if q ∈ Wi+1\Wi) there has to be an α such that δ(q, α) 6= ∅
and δ(q, α) ⊆Wi hold. Then we set C(q) = α. For a node v ∈ F we can choose
an arbitrary value α with |δ(v, α)| 6= 0.

• In the case that the sequence of Wi’s is decreasing with respect to set inclusion
(this will happen at Algorithm 3 and Algorithm 4) the construction is symmetric
to the above case: Every time if a state is kept in Wi+1 (i.e., q ∈Wi+1 holds) we
choose an α with the properties δ(q, α) 6= ∅ and δ(q, α) ⊆Wi, and set C(q) = α
(clearly, it suffices to do this not until the last iteration because it makes no
sense to control non-winning states).

Let us illustrate this method on the example execution of Algorithm 4 on the original
plant automaton from Figure 7.1 (see the left column of Table 7.2): for all nodes in F
(here f and i) we can choose an arbitrary controller which enables a transition. This
forces us to choose C(f) = C(i) = β. The set difference W2 −W1 equals {e, i}, and
we choose C(e) = C(i) = β because of δ(e, β) ⊆ W1 and δ(i, β) ⊆ W1 (note that the
choices C(e) = α and C(i) = α are not possible because of δ(e, α) (W1 and δ(i, α)
(W1). For analogous reasons we obtain C(d) = C(h) = β, C(c) = C(g) = α and
C(s) = β.

As we will see exemplary in Algorithm 6 these computations can be done during the
execution of the respective algorithm without slowing down its asymptotical running
time. So for the runtime discussions in the next subsection we note only that the
running time of computing a controller for a given control objective is asymptotically
the same as deciding controllability using one of Algorithms 2 - 5.

44

7.3 Implementation Details

7.3.2 Running Time Considerations

There is some work about computing controllers as in the previous subsection (see
e.g. [BL69, RW89, TW91, TW94]) but nowhere an analysis of the complexity of
the presented algorithm is provided. As a first glance it looks like we could apply a
stepping technique for computing the sequence of Wi’s in Algorithm 2 and Algorithm 3
as used in a similar context for example in [Ehm03, EMS03a, EMS03b]. However, the
predecessor operator lacks suitable algebraic properties for developing an analogous
technique. In a relational setting, the properties used there can be written as R; (S∪T)
= (R;S) ∪ R;T and (M ∪ N)R = MR ∪ NR. For the π-operator we have only
inclusions, which can also be strict as shown in Lemma 7.2.1.

First we propose in Algorithm 6 an implementation of Algorithm 3. This algorithm
computes a controller simultaneously with the sets from Algorithm 3.

Let us take a closer look at this implementation:

• In Line 1 we start the iteration already with the set F instead of ∅. This is
possible since in Algorithm 3 we have W1 = F .

• For every node v ∈ F we choose an arbitrary controller value (Lines 10 - 13),
according to the discussion in Subsection 7.3.1.

• The controllable predecessors of Wi are determined pointwise, i.e., every node
from a candidates set (see next item) is tested separately for membership in
π(Wi).

• We maintain a set V ′ in which we keep the candidates for all elements of po-
tential predecessors (cf. Line 5 of Algorithm 3) to avoid unnecessary multiple
computations. So if we look for possible predecessors of Wi−1 (between Lines 17
and 27) it suffices to consider only nodes in V ′.

• The nodes in Wi−Wi−1 are kept in a set ∆W and are added to Wi−1 in Line 28.
The reason for this is to obtain a exact implementation since we will represent
all Wi’s in one array (see the following discussion about the implementation of
the set operations).

• If we find a node in π(Wi−1) (this happens if the condition in Line 19 evaluates to
true) we add it to ∆W and remove it from V ′. In this case we could immediately
leave the loop beginning in Line 18 by a break-statement but we abstained from
this possibility for the following reasons: first, a break-statement may lead to
confusions while reading the code, and second it does not improve the running
time in the worst case (an α with the property from Line 19 could be found in
the very last pass through the loop starting in Line 18).

45

7 Control of Plant Automata

Algorithm 6 Implementation of Algorithm 3

1: W0 ← F
2: V ′ = V − F
3: for all v′ ∈ V ′ do
4: determine gout(v

′)
5: end for
6: i← 0
7: for all v ∈ V ′ do
8: C(v)← null

9: end for
10: for all v ∈ F do
11: choose an arbitrary α such that |δ(v, α)| 6= 0
12: C(v)← α
13: end for
14: repeat
15: i← i+ 1
16: ∆W = ∅
17: for all v′ ∈ V ′ do
18: for all α ∈ gout(v

′) do
19: if δ(v′, α) ⊆Wi−1 then
20: ∆W = ∆W ∪ {v′}
21: V ′ = V ′ − {v′}
22: if C(v′) 6= null then
23: C(v′)← α
24: end if
25: end if
26: end for
27: end for
28: Wi = Wi−1 ∪∆W
29: until Wi = Wi−1

46

7.3 Implementation Details

A tedious task is the implementation of the involved set operations. They can be
done in the following manner:

• For the set V ′ we want a data structure which allows iteration through all ele-
ments of V ′ in O(V ′) time, and removal and insertion of an element in constant
time. For this purpose we use the combination of a doubly linked list ΛV ′ of el-
ements in V and an array AV ′ indexed by V . In ΛV ′ every element of V ′ occurs
exactly one time. The array contains tuples consisting of a Boolean value and
a pointer to an element of the doubly linked list. The Boolean part of AV ′ [v]
equals true iff v ∈ V ′ holds. In this case, the pointer of AV ′ [v] points to the
corresponding element of ΛV ′ ; otherwise it is set to null. If we want to iterate
over all elements of V ′ we use ΛV ′ . Adding and removing an element from
V ′ can be done in a similar manner as the analogous operations in the mixed
representation of a set labelled graph (see Chapter 4).

• The set ∆W is represented by a linked list, consisting of elements from V , so
iteration through all its elements can be done in linear time. The same holds
for deletion of all its elements.

• The different sets Wi will be implemented by one Boolean array W with indices
from V . To implement Line 1, we set W [v] = false for all v /∈ F and W [v] = true

for all v ∈ F . In Line 28 we simply set W [v] to true for all nodes in ∆W . This
can not take place in Line 20 because this could change the value of Wi−1. In
contrast, the described approach preserves the value of Wi−1 till the end of the
until-loop in Line 28.

To analyse the running time we assume that the plant automaton is given in mixed
representation as described in Chapter 4. Together with the above considerations we
obtain the following analysis:

• Lines 1 and 2 can be executed in O(|V |) time each. The same holds for the loop
between Line 7 and 9.

• The determination of gout(v
′) for all v′ ∈ V ′ (Lines 3 - 5) can be done in

O(|E| · |L|) time. For this purpose we iterate for every v′ ∈ V ′ through the
list Σ[v′] and add for every w ∈ Σ[v′] the values of Γ[v′][w] to gout(v

′). The
running time can be achieved if we maintain every gout(v

′) as a list and besides
use during the iteration through Σ[v′] a Boolean array indexed by A where we
record every value we added already to gout(v

′). We will see that this does not
affect the asymptotic running time.

47

7 Control of Plant Automata

• The running time of the loop between Line 10 and 13 depends on Line 11. This
line can be executed in constant time as follows: we first determine a node w
with (v, w) ∈ E (using a mixed representation we only have to deliver the first
element of Σ[v]). Subsequently, we choose for α the first element of Γ[v][w].

• The until-loop between Line 14 and Line 29 is executed at most |V |+ 1 times
because the sequence W0, W1, W2, . . . is strictly increasing with respect to ⊆
(apart from the last iteration) and it is bounded from above by V .

• By construction, V ′ and Wi and hence ∆W and Wi are disjoint. So the loop
condition in Line 29 reduces to the test ∆W = ∅ which can be done in constant
time.

• Line 16 can be done in constant time (we simply initialise a new doubly linked
list) or in time O(|∆W |) (if we deallocate all list elements of ∆W). If we choose
the second possibility we have an overall running time (summed up over all
executions of the until-loop) of O(|V |) which will not affect the asymptotic
running time.

• The for-loop between Line 17 and Line 27 is executed |V ′| times. In the worst
case |V ′| equals 1 in Line 14 and is decremented by 1 in every run through the
until-loop, so we can have a total of O(|V |2) executions of this for-loop.

• The next for-loop from Line 18 till Line 26 is executed |gout(v′)| times. Together
with the previous result this leads to a total of O(|V |2 · |L|) executions.

• The comparison δ(v′, α) ⊆ Wi−1 in Line 19 can be done in O(|δ(v′, α)|) time
(see Operation 1 of the mixed representation and the representation of Wi−1 as
a Boolean array).

• Every statement between Line 20 and Line 24 can be executed in constant time.

• The overall running time of Line 28 is in O(|V |); cf. the analysis of Line 16.

So the dominating parts are the computation of gout(v
′) for all v′ ∈ V − F (Line 3

- 5) with a running time in O(|E| · |L|) and the for-loop from Line 18 till Line 26
with a running time in O(|V |2 · |L|). Because of |E| ∈ O(|V |2) the running time of
Algorithm 6 is in O(|V |2 · |L|). In symmetric manner we can implement Algorithm 2
which leads to the same running time.

The implementation of Algorithm 4 and 5 can be done by using implementations of
Algorithm 2 and 3 as a subroutine for their loops from Line 5 till Line 7. The outer
loop between Line 2 and Line 8 in both algorithms is executed in the worst case
O(|V |) times. So the overall runtime is here in O(|V |3 · |L|).

48

7.4 Computing Controllers via Quotients

7.4 Computing Controllers via Quotients

7.4.1 Compatibility of Controllers with Bisimulation Quotients

In Subsection 7.2.3 we showed that controllability can be decided with the use of
bisimulation quotients. However, we did not investigate whether the actual computa-
tion of a controller is possible in an analogous manner. To our pleasure, this approach
works with the help of the following theorem:

Theorem 7.4.1 Let P = (((V,E), g), a) be a plant automaton and B a bisimulation
equivalence for P . Additionally, let C be a controller for P/B such that (P/B)C fulfills
some property ω ∈ Ω. Then we have (P/B)C\B = PC\B. Moreover, (P/B)C\B
fulfills ω, too.

Proof: In the sequel we use the following canonical notations, which we repeat
explicitly to clarify matters:

• P/B = (((V/B,E/B), g/B), a/B)

• (P/B)C = ((((V/B)C , (E/B)C), (g/B)C), (a/B)C)

• (P/B)C\B = ((((V/B)C\B, (E/B)C\B), (g/B)C\B), (a/B)C\B)

• PC\B = (((VC\B , EC\B), gC\B), aC\B)

By definition we have (V/B)C\B = V = VC\B and (a/B)C\B = a = aC\B, so it
remains to show that (E/B)C\B = EC\B and (g/B)C\B = gC\B hold.

For the first equality we consider an arbitrary edge (v, w) in (E/B)C\B and reason
as follows:

(v, w) ∈ (E/B)C\B ⇔
{ definition of expansion }

(v, w) ∈ E ∧ (v/B,w/B) ∈ (E/B)C∧
∃ℓ : ℓ ∈ (g/B)C(v/B,w/B) ∧ ℓ ∈ g(v, w)⇔
{ definition of (E/B)C }

(v, w) ∈ E ∧ (v/B,w/B) ∈ (E/B) ∧ C(v/B) ∈ (g/B)(v/B,w/B)∧
∃ℓ : ℓ ∈ (g/B)C(v/B,w/B) ∧ ℓ ∈ g(v, w)⇔
{ definition of (g/B)C }

(v, w) ∈ E ∧ (v/B,w/B) ∈ (E/B) ∧ C(v/B) ∈ (g/B)(v/B,w/B)∧
∃ℓ : ℓ = C(v/B) ∧ ℓ ∈ g(v, w)⇔
{ C is a total function }

(v, w) ∈ E ∧ (v/B,w/B) ∈ (E/B) ∧ C(v/B) ∈ (g/B)(v/B,w/B)∧

49

7 Control of Plant Automata

C(v/B) ∈ g(v, w)⇔
{ Lemma 6.2.2, set theory }

(v, w) ∈ E ∧ (v/B,w/B) ∈ (E/B) ∧ C(v/B) ∈ g(v, w)⇔
{ Corollary 6.2.1, set theory }

(v, w) ∈ E ∧ C(v/B) ∈ g(v, w)⇔
{ definition of C\B }

(v, w) ∈ E ∧ C\B(v) ∈ g(v, w)⇔
{ definition of E(C\B) }

(v, w) ∈ E(C\B)

Now we know that (E/B)C\B = EC\B holds, so that the equality (g/B)C\B = gC\B

is a simple implication of Part 3 of Definition 7.1.4 and the definition of C\B (cf.
Definition 6.3.2).

As stated by Theorem 6.3.1, (P/B)C and (P/B)C\B are bisimilar. So (P/B)C\B
fulfills ω, as an easy consequence of Corollary 6.1.1. �

Theorem 7.4.1 leads immediately to Algorithm 7 which computes a controller for a
given control property ω. In this algorithm, the implementations of Line 1 and Line 3
were already discussed. The actual problem, the computation of the controller in
Line 2 was already investigated in Section 7.3.

Algorithm 7 Computing a Controller via the Coarsest Quotient

Require: a plant automaton P = (((V,E), g), a) and a control property ω
1: compute the coarsest bisimulation B for P
2: compute a controller C for P/B such that (P/B)C fulfills ω
3: compute the expansion (P/B)C\B

Ensure: (P/B)C\B fulfills ω

7.4.2 Running Time Considerations

The running times ofO(|V |2·|L|) andO(|V |3 ·|L|) from Subsection 7.3.2 for computing
controllers compared to the running time of O(|E| · log|V | · |L|) for computing the
coarsest quotient gives hope to obtain a speed-up using Algorithm 7 instead of the
immediate application of Algorithm 6 or related algorithms from Subsection 7.3.2.
We will give an example of a family of plant automata with this property.

Consider the family (Pi)i∈IN+ = (((Vi, Ei), gi), ai) of plant automata, defined by

• Qi = {si}∪̇{q
jk
i | 1 ≤ j, k ≤ i}

50

7.4 Computing Controllers via Quotients

s1

q111

α

α

s2

q112

q212

α

α

α

q122

q222

α

α

α

s3

q113

q213

q313

α

α

α

α

q123

q223

q323

α

α

α

α

q133

q233

q333

α
α

α

α

Figure 7.2: A Family of Plant Automata

• Ei = {(si, q1ki) | 1 ≤ k ≤ i} ∪̇ {(qj−1k
i , qjki) | 1 ≤ k ≤ i, 2 ≤ j ≤ i} ∪̇ {(qhii , qhii) |

1 ≤ h ≤ i}

• gi(e) = α for all e ∈ Ei

• ai(v) =

{init} if v = si

{F} if v ∈ {qiji | 1 ≤ j ≤ i}

∅ otherwise

The first three members of this family P1, P2 and P3 are depicted in Figure 7.2.
Their coarsest quotients are sketched in Figure 7.3 (the nodes’ captions are slightly
simplified). Obviously, a controller Ci with respect to (F,3) for every Pi is simply
given by Ci(v) = α for every v ∈ Vi.

For the number of nodes and edges of Pi we have |Vi| = i2 + 1 and |Ei| = i2 + i,
so |Ei| ∈ Θ(|Vi|) = Θ(i2). However, in the coarsest quotient Pi/Bi (where Bi is the
coarsest bisimulation for Pi) we have for the number of nodes and edges the equalities
|Vi/Bi| = i+ 1 and |Ei/Bi| = i+ 1 and hence |Ei| ∈ Θ(|Vi|) = Θ(i).

Let us now consider the execution of Algorithm 6 on Pi. The Lines 1 - 13 can be
executed in O(|Ei|) =O(|Vi|) time. However, the bottleneck is the until-loop between
Line 14 and Line 29. Before the first entry into this loop, W0 is set to {qiji | 1 ≤ j ≤ i}

51

7 Control of Plant Automata

s1

q11

α

α

s2

q12

q22

α

α

α

s3

q13

q23

q33

α

α

α

α

Figure 7.3: Coarsest Quotients of Plant Automata

in Line 2. After the first iteration we have W1 = {qhji | 1 ≤ j ≤ i, i− 1 ≤ h ≤ i}, and

inductively we get Wh = {qgji | 1 ≤ j ≤ i, i−h ≤ g ≤ i} for 0 ≤ h ≤ i−1. Finally, this
loop terminates after i+1 executions because of Wi+1 = Wi = Vi. The set V ′ contains
during the h-th execution |Vi|− |Wh| = i2+1−hi elements for 1 ≤ h ≤ i, so the loop

between Line 17 and 17 has an overall running time of at least Θ(
i∑

h=1

i2 + 1 − hi) =

Θ(12 i(i
2 − i+ 2)) = Θ(i3) = Θ(|Vi|

3
2).

Consider now the execution of Algorithm 7 on Pi where we implement Line 2 by
Algorithm 6. The first line can be executed in O(|Ei| · log(|Vi|)) = O(|Vi| · log(|Vi|))
time. After this we obtain a quotient with i+1 nodes and edges as shown in Figure 7.3.
Running Algorithm 3 on this quotient needsO((i+1)2) =O(|Vi|) time. Because Line 3
of Algorithm 7 can be executed in O(|Vi|+ |Ei|) = O(|Vi|) time, the overall running
time is in O(|Vi| · log(|Vi|)) time. This is a speed-up compared to the immediate
application of Algorithm 6 as analysed above. An even greater speed-up can be
expected in an analogous situation for Algorithms 4 and 5.

52

Chapter 8

Target Models

This chapter is in a large part based on the work in [Glü11] and [Glü12].
We focus on optimality problems as shortest walks or maximum capacity
walks and use an algebraic framework which captures a large variety of
such problems. The goal is to refine a model in such a way that a
distinguished set of nodes, the target set, is reached on an optimal walk.
Before we investigate the use of bisimulation quotients for this kind of
problem we discuss generally the possibility of refining such models and
introduce some algorithms for obtaining optimality.

8.1 Dioids

To model the costs of a walk in a general manner we label the edges with ele-
ments drawn from a dioid. The use of dioids for this purpose is extensively de-
scribed in [GM08b] and used for example in [BG09]. Similar approaches can be found
in [BC75, Bou04, Min76]. Therefore, we will use the namings from [GM08b] although
there are other namings for the same structures. In the further course we will deviate
from [GM08b] since we concentrate on the refinement of models, which is not covered
there.

Definition 8.1.1 A complete dioid is a structure (D,Σ, 0, ·, 1) such that (D,⊑) is a
complete lattice with supremum operator Σ and least element 0, where ⊑ is defined

8 Target Models

by x ⊑ y ⇔ Σ{x, y} = y, (D, ·, 1) is a monoid and · distributes over Σ from both
sides. ⊑ is called the order of the complete dioid.

The binary supremum operation in a complete dioid is denoted by + and is referred
to as addition, i.e. x + y = Σ{x, y}. Because 0 is the least element with respect to
⊑, we have x+0 = 0+ x = x for all x ∈ D. Moreover, + is commutative, associative
and idempotent (i.e., x + x = x holds for all x ∈ D). The operation · is also called
multiplication. Note that 0 is an annihilator of multiplication (i.e. 0 · x = x · 0 = 0
for all x ∈ D) due to Σ ∅ = 0. Often for readability the · is omitted, so ab stands
for a · b. As commonly known in this setting, both addition and multiplication are
isotone with respect to the order, i.e. a ⊑ b implies a + c ⊑ b + c and c + a ⊑ c + b
as well as ac ⊑ bc and ca ⊑ cb for all a, b, c ∈ D. We use a < b as an abbreviation
for a ⊑ b ∧ a 6= b, and the signs ⊒ and = instead of ⊑◦ and <

◦ respectively. In order
to avoid notational overflow will use D to denote both the carrier set of a complete
dioid and the complete dioid itself when the meaning is clear from the context.

In our setting the supremum operation models choice, and the multiplication models
composition off walks. So if we consider to walks we can decide which of them is the
better one (or they may both be even attractive to us) with respect to our optimality
objective. This motivates the use of selective dioids. A complete dioid is called
selective if a + b ∈ {a, b} holds. Obviously this can be extended to the suprema of
arbitrary nonempty finite sets. In this case, ⊑ is a linear relation. In the sequel we
will consider mainly selective complete dioids; we call them s-dioids for short.

There are many examples for complete dioids, such as (IR∪{−∞,∞}, sup,−∞, inf,∞)
or (2IN,∪, ∅,∩, IN). The lattice order is ≤ in the first example and ⊆ in the second
one. The first one is also an s-dioid, whereas the second one is not.

As a special class of complete dioids we consider cumulative dioids, which are char-
acterised by a ⊑ 1 for all a, i.e., 1 is the greatest element with respect to the dioid’s
order. This includes the most used and common dioids, for example the well-known
sup-inf dioid (IR∪{−∞,∞}, sup,−∞, inf,∞) is cumulative. In the context of lan-
guage analysis they are also used under the name 1-bounded in [EKL08]. We can
characterise cumulative dioids in different equivalent ways, as stated in the following
lemma:

Lemma 8.1.1 The following statements are equivalent:

1. (D,
∑

, 0, ·, 1) is a cumulative dioid.

2. For all a, b, c ∈ D the implications a ⊑ b⇒ ac ⊑ b and a ⊑ b⇒ ca ⊑ b hold.

3. For all a, b ∈ D the inequalities ab ⊑ a and ba ⊑ a hold.

54

8.2 Models and Costs

Proof: 1 ⇒ 2: Let a, b, c ∈ D be arbitrary with a ⊑ b. Because of isotony of
multiplication with respect to. ⊑ and the assumption c ⊑ 1 we have ac ⊑ a · 1 = a
and hence ac ⊑ b. The other implication is shown analogously.
2 ⇒ 3: For arbitrary a, b ∈ D we have a ⊑ a and due to b) we have ab ⊑ a (choose
a := a, b := a and c := a). The other inequality follows analogously.
3 ⇒ 1: In 3 we chose an arbitrary b and set a = 1. �

The meanings and interpretations of these equivalent characterisations will become
clear in the next section.

8.2 Models and Costs

8.2.1 Costs, Distances and Optimal Walks

As mentioned above, we will investigate transition systems with costs for each tran-
sition and target sets which are to be be reached. This is subsumed in the next
definition in the context of models:

Definition 8.2.1 A target model is a model M = (((V,E), g), a) with the following
properties:

1. g is a mapping from E into the power set of the carrier set of an s-dioid
(D,Σ, 0, ·, 1) with g(v, w) 6= ∅ for all (v, w) ∈ E.

2. a is a mapping from V into the set {trans, fin}.

3. From every node v ∈ V with a(v) = trans some node w ∈ V with a(w) = fin is
reachable.

4. Every node v ∈ V with a(v) = fin has outdegree zero.

With the above notations, the dioid (D,Σ, 0, ·, 1) is called the associated dioid of M .
Note that the dioid itself is not determined by the model (only its carrier set), but
we will tacitly assume that the dioid is clear from the context.

The function g models the cost of a transition and is hence called the cost function
of M . The nodes in the set {v ∈ V | a(v) = fin} model the states we want to each
from any node outside on an optimal walk. So the set {v ∈ V | a(v) = fin} is called
the target set of M . As abbreviation for the target set we use the notation VT . With
this interpretation Part 4 of the definition makes sense since we do not want to exit
from a node in the target set.

55

8 Target Models

a

b

c

d

e

f

g

1

5

3

4

1

5

3

4

Figure 8.1: A Target Model

In practice, target models are in the most cases labelled. We dropped this require-
ment here, because the coarsest quotient of a uniquely labelled model need not to be
uniquely labelled itself, as pointed out in section 6. So Definition 8.2.1 can serve as a
consistent framework for both target models derived from practical applications and
their quotients.

In the latter course we will deal with systems which are no ‘perfect’ target models
in intermediate steps of an algorithm which constructs target models. So a defect
target model fulfills the Parts 1, 2 and 4 of Definition 8.2.1, but not necessarily
Part 3. For a (possibly defect) target model M = (((V,E), g), a) and a subgraph
G′ = (V ′, E′) 4 (V,E) the restriction of M by G′, denoted by M |G′ , is defined by
M |G′ = (((V ′, E′), g|E′), a|V ′).

As a drawing convention for a graphical representation we declare that nodes in the
target set are doubly surrounded and all other nodes are simply surrounded. If the
target model is uniquely labelled we omit the set braces at the edge captions. The
same holds for the node captions in quotients. So Figure 8.1 shows a uniquely labelled
target model with target set {d, g}, but it is not yet clear what the associated s-dioid
is because the operations on the dioid elements are not defined. This will have to be
done in the context. We will refer to this later.

56

8.2 Models and Costs

As already mentioned, we will use the values from the associated s-dioid to generalise
costs of walks. To this purpose we introduce the following definition:

Definition 8.2.2 Let M = (((V,E), g), a) be a target model and (D,Σ, 0, ·, 1) the
associated s-dioid. Then for a walk w = x1x2 . . . xn in G the cost c(w) of w is defined

by c(w) =
∑

lab∈L(w)

n−1∏
i=1

labi. For two nodes x and y the distance d(x, y) between x and

y is defined by d(x, y) =
∑

w∈W (x,y)

c(w). In a target model the target distance d(x) of

a node x is defined as d(x) =
∑

t∈VT

d(x, t). A walk w = x1x2 . . . xn is called optimal if

the equality c(w) = d(x1, xn) holds.

This is a generalisation of the definitions of shortest walks or maximum capacity
walks. The cost of a walk in these classic examples is defined as the sum and the
maximum, resp, of the edge labels along it. Because we allow set-valued edge labels
we take the optimum (here denoted by the sum) of all its labellings (note that sum
and maximum correspond to multiplication in the s-dioid corresponding to shortest
walks and maximum capacity walks). The distance of to nodes is defined as the
optimum of the costs of all walks (this optimum corresponds to the infimum and the
supremum in the case of shortest and maximum capacity walks, resp.).

Note that the cost of a walk and the distance between two nodes as well as the target
distance of a node itself are always well-defined, because in an s-dioid suprema of
arbitrary sets always exist. The distance d(v, w) of two nodes v and w such that w is
not reachable from v is defined as the supremum of the empty set and hence equals 0.
Also in general d(v, w) = d(w, v) does not hold. In a uniquely labelled target model

the obvious equality c(w) =
n−1∏
i=1

l(w) holds. Optionally, if we deal with various target

models at the same time, we equip the symbols for cost and distance with an index
indicating the target model under consideration.

Because the empty word is contained in the set of labellings of the walks from a node
to itself the distance d(v, v) between a node and itself equals the greatest element of
the associated dioid. In the case of a cumulative s-dioid we have d(v, v) = 1. Due
to Definition 8.2.1 nodes in the target set do not have outgoing edges, so the only
labelling from such a node to itself is the empty word. Hence d(v) equals the greatest
element of the associated dioid for all nodes v in the target set.

If we choose the s-dioid (IR+
0 ∪{∞}, inf,∞,+, 0) for the edge labels in a uniquely

labelled target model, the cost of a walk corresponds to its length in its classic sense
as the sum of the weights of its edges. The distance of two nodes corresponds to the
length of a shortest walk connecting these two nodes, and the target distance d(x) in

57

8 Target Models

this setting to the minimal length of a shortest walk from x leading into the target set.
Note that the order ⊑ in this s-dioid corresponds to ≥: if we have the choice between
two walks we will choose the one with the lower cost, so lower numbers are more
desirable than greater ones. Similarly, if the s-dioid (IR∪{−∞,∞}, sup,−∞, inf,∞)
is chosen, the cost corresponds to the capacity (i.e., the minimum of all labels along
a walk) of a walk, and the distance d(x, y) to the maximum capacity of all walks in
W (x, y) (note that here the order ⊑ corresponds to ≤).

8.2.2 Properties and Existence of Optimal Walks

In the following we will investigate some properties of optimal walks. Some of them
are important in the sequel, others are without further consequences but nevertheless
of interest.

A simple, but for further considerations important, observation is stated in the next
lemma:

Lemma 8.2.1 Let w be an optimal walk from x to y, and let z be an inner node of
w. Then c(w) = d(x, z) · d(z, y) holds.

Proof: Denote by wx a subwalk of w leading from x to z, and chose wy so that
w = wx ⊲⊳ wy holds. Moreover, let wxz be an optimal walk from x to y and wzy be
an optimal walk from z to y. The inequality c(w) ⊑ d(x, z) · d(z, y) can be shown as
follows:

c(w) =
{ splitting of w }

c(wx) · c(wy) ⊑
{ wxz and wyz are optimal }

c(wxy) · c(wyz) =
{ Definition 8.2.2 }

d(x, z) · d(z, y)

The other inequality d(x, z) · d(z, y) ⊑ c(w) is also not hard to show:

d(x, z) · d(z, y
{ Definition 8.2.2 }

c(wxy) · c(wyz) =
{ gluing of walks }

c(wxy ⊲⊳ wyz) ⊑
{ wxy ⊲⊳ wyz ∈ W (x, y), w optimal }

c(w)

58

8.2 Models and Costs

These two inequalities show the desired equality. �

Note that contrary to the intuition based on the shortest path problem an optimal
walk need not be the gluing of two optimal walks. To see this take a look at the target
model in Figure 8.1, and interpret the edge labels in the s-dioid (IR∪{−∞,∞}, sup,
−∞, inf,∞): Then aeg is an optimal walk whereas its subwalk eg is not.

Even a weaker version of the above observation is not correct. There is a target model
M = (((V,E), g), a) with associated cumulative s-dioid and two connected nodes v1

and v2 with the the following property: for every optimal walk w in W(V,E)(v, w)
there is a non-optimal subwalk w′ of w. An example is given by the following uniquely
labelled target model, sketched in Figure 8.2:

• V = {s, v, t} ∪
⋃

n∈IN

{vn}

• E = {(s, v)} ∪
⋃

n∈IN

{(v, vn), (vn, t)}

• g(s, v) = {1}

• g(v, vn) = g(vn, t) = {2− 2−n} for all n ∈ IN

• a(t) = fin

• a(v) = trans for all v ∈ V − {t}

If we interpret the edge labels in the cumulative s-dioid (IR∪{−∞,∞}, sup,−∞, inf,∞)
every walk from s to t is an optimal one, containing a subwalk from v to t. But there
is no optimal walk at all from v to t because we have d(v, t) = 2 and c(w) 6= 2 for all
w ∈ WG(v, t).

This shows also that in general an optimal walk need not exist. However, if the set of
edge labels is finite we are in a much better situation. The key insight is the following
theorem which was proven already back in 1952 (Theorem 4.4 in [Hig52]; in language
theory the subject of this theorem is known as scattered subword, cf. [FN08, Sal03]):

Theorem 8.2.1 If X is any set of words formed from a finite alphabet, it is possible
to find a finite subset X0 of X such that, given a word w in X, it is possible to find w0

in X0 such that the letters of w0 occur in w in their right order, though not necessarily
consecutively.

This theorem is a valuable ingredient for the proof of the following theorem:

Theorem 8.2.2 Let M = (((V,E), g), a) be a target model with finite label set L and
associated cumulative s-dioid (D,

∑
, 0, ·, 1). Then for every v ∈ V there is a walk w

from v into the target set with c(w) = d(v).

59

8 Target Models

s v tv0

v1

v2

r

r

r

1 1 1
1.5

1.5
1.7

5 1.75

Figure 8.2: Walks without Optimal Subwalks

Proof: Let M = (((V,E), g), a), L and (D,
∑

, 0, ·, 1) be as above, and fix an arbitrary
v ∈ V . Then the set of all labellings Lv of walks from v into the target set is a language
over L, and due to Theorem 8.2.1 there is a finite subset L′

v ⊆ Lv such that for every
lv ∈ Lv there is an l′v ∈ L′

v such that the symbols of l′v occur in the same order also in

lv. For an arbitrary l = ℓ1ℓ2 . . . ℓn ∈ L
∗

we define the cost of l by c(l) =df

n∏
i=1

ℓi. By

definition, we have d(v) =
∑
{c(lv) | lv ∈ Lv}. However, due to the above observation,

isotony of multiplication and cumulativity, for every lv ∈ Lv there is an l′v ∈ L′
v

with the property c(lv) ⊑ c(l′v). Hence the target distance of v can be written as
d(v) =

∑
{c(l′v) | l

′
v ∈ L′

v}. Because L′
v is finite and ⊑ is a linear order there is a

l′v ∈ L′
v with d(v) = c(l′v). But by construction, there is also a walk w from v into the

target set of M with l′v ∈ l(w) and hence d(v) = c(w). �

8.2.3 Label-optimised Models

Before applying some algorithm to refine target models we have to deal with the fact
that the associated graph need not to be uniquely labelled. We will here consider only
the case of finitely labelled target models. As it will turn out, one of the labels suffices
to generate a target model with a, for our purposes, sufficiently similar behaviour.
This is done in the following definition:

Definition 8.2.3 Let M = (((V,E), g), a) be a finitely labelled target model and

60

8.3 Optimality and Refineability

(D,Σ, 0, ·, 1) the associated s-dioid. Then the label-optimised target model Mo =
(((Vo, Eo), go), ao) is defined as follows:

1. go(v, w) = {
∑

g(v, w) } for all (v, w) ∈ E

2. Vo = V , Eo = E and ao = a

Because M is finitely labelled we have go(v, w) ⊆ g(v, w) for all (v, w) ∈ E. Together
with part b) from the definition this means that Mo is a submodel of M .

The construction of the label-optimised model is justified by the following lemma
which states the above mentioned similarity explicitly in a formal way:

Lemma 8.2.2 Let M = (((V,E), g), a) be a target model and Mo = (((Vo, Eo), go), ao)
its label-optimised target model. Then for all x, y ∈ V the distance between x and y
in M equals the distance between x and y in Mo.

Proof: From the definition of the label-optimised model it is obvious that every walk
in M also exists in Mo and vice versa. So we assume w.l.o.g. that y is reachable
from x both in M and Mo (otherwise the distance between x and y equals 0 both
in M and Mo, and we are done). Now it suffices to show that for every walk from
x to y in M the costs in M and Mo are equal. So let w = w1w2 . . . wn be a walk in
M from x to y, denote its cost in M by cM (w) and in Mo by cMo

(w) and its set of
labellings in M by LM (w) and its labelling in Mo by lMo

(w). Due to construction
of Mo we have LM (w) ∋ lMo

(w) and hence cM (w) ⊒ cMo
(w). On the other hand,

we have liM ⊑ liMo
for all lM ∈ LM (w) and i ∈ {1..n− 1}. Isotony of multiplication

yields
n−1∏
i=1

liM ⊑
n−1∏
i=1

liMo
for all lM ∈ LM (w), so we also have the converse inequality

cM (w) ⊑ cMo
(w). �

So if we want to compute the distances in a target model it suffices to compute the
distances its label-optimised model.

8.3 Optimality and Refineability

To make things easier it turns out to be useful to consider first uniquely labelled
target models. The obtained results will hold in a similar formulation for general
target models due to Lemma 8.2.2.

Until now we did not make statements about the existence of optimal walks. E.g., in a
uniquely labelled target model with label set IR there is no shortest walk between two
nodes in the presence of a cycle with negative length (by definition, in this context

61

8 Target Models

the distance between two nodes can be −∞, but there is no walk with this cost). If
the unique labels are drawn from a cumulative s-dioid and the target model is finite,
we are in a much better position: We can show that between two reachable nodes
an optimal walk always exists, and moreover that there is even a path with optimal
costs between two reachable nodes. This is the content of the following lemma.

Lemma 8.3.1 Let M = (((V,E), g), a) be a finite uniquely labelled target model with
a cumulative associated s-dioid (D,

∑
, 0, ·, 1), and let x and y be two reachable nodes.

Then there is a path p ∈ P (x, y) in (V,E) with c(p) = d(x, y).

Proof: Let x, y ∈ V be arbitrary reachable nodes and let w ∈ W (x, y) be an
arbitrary walk in (V,E). Now we assume that w contains a repeated node, i.e.
w = x1x2 . . . xi . . . xj . . . xn with xi = xj and i 6= j. Consider now the walk w′ =
x1x2 . . . xi−1xj . . . xn from x1 to xn. Due to cumulativity we have c(x1x2 . . . xi . . . xj)
⊑ c(x1x2 . . . xi−1), and together with the isotony of multiplication we obtain c(w) ⊑
c(w′). If we repeat this construction sufficiently (but finitely!) often we obtain
from w a path p ∈ P (x, y) in (V,E) with c(w) ⊑ c(p). Therefore in this case
d(x, y) =

∑
w∈W (x,y)

c(w) =
∑

p∈P (x,y)

c(p) holds. Since M is supposed to be finite there

are only finitely many paths from x to y and hence there is a p ∈ P (x, y) with
c(p) = d(x, y) (note that the order in an s-dioid is linear, so every finite set contains
a least element). �

We want to ensure that every walk from a node outside the target set leading into the
target set is an optimal one. To this purpose we will not only remove ‘bad’ edges bad
also ‘bad’ edge labels. This goal will be achieved by constructing a suitable target
submodel, which motivates the following definition (which is valid for the case of
general target models):

Definition 8.3.1 For a target model M = (((V,E), g), a) a target submodel M ′ �
M is called an optimal target submodel, if for all walks w in M ′ from x to any node
t with a(t) = fin the cost cM ′(w) equals the target distance dM (x) in M (note that a
target submodel is also a target model and therefore in an optimal target submodel
the target set has to be reachable from every node outside of it).

In our example from Figure 8.1 the labels can be interpreted in the s-dioid (IR∪{−∞,
∞}, inf,∞,+, 0). An optimal target submodel in this case is given in Figure 8.3. As-
suming the labels to represent elements of the s-dioid (IR∪{−∞,∞}, sup,−∞, inf,∞)
we see an optimal target submodel in Figure 8.4.

An immediate consequence of the Lemmata 8.2.2 and 8.3.1 and Definition 8.3.1 is the
following corollary:

62

8.3 Optimality and Refineability

a

b

c

d

e

f

g

1

3

4

1 3

4

Figure 8.3: An Optimal Target Submodel

a

b

c

d

e

f

g

1

5 4

1

5 4

Figure 8.4: Another Optimal Target Submodel

63

8 Target Models

Corollary 8.3.1 Let M be a finitely labelled target model, Mo its label-optimised
target model and M ′

o an optimal target submodel of Mo. Then M ′
o is an optimal

target submodel of M, too.

8.4 Target Models with Cumulative S-Dioids

The shortest walk problem in presence of negative cycles shows that not every target
model (not even every uniquely labelled target model) has an optimal submodel.
Target models, which have an optimal submodel, are called refineable. We will show
that cumulativity is a necessary and sufficient condition for an s-dioid to guarantee
the refineability of target models with it as associated s-dioid:

Theorem 8.4.1 Let (D,
∑

, 0, ·, 1) be an s-dioid. Then every finite target model with
D as associated s-dioid is refinable iff D is cumulative.

Proof: In order to show the direction ⇒ we consider Algorithm 8, which is basically
a variant of Dijkstras algorithm for shortest paths (note that this algorithm works
only on uniquely labelled target models). The correctness of this algorithm is shown
in a way very similar to the known arguments for the common Dijkstra algorithm
(see e.g. [Dij] and [Jun05]). In contrast to there, the edges are labelled with elements
of a general cumulative s-dioid instead of (IR+

0 ∪{∞}, inf,∞,+, 0), and we are not
interested in computing shortest paths from a single node to all other nodes but
we want to determine optimal walks leading into a given target set from every node
outside of this target set. A feature shared with the classic case is the fact that in both
cases prolonging a walk can not improve its cost. So for every walk v1v2 . . . vnvn+1

we have the inequality c(v1v1 . . . vn) ⊒ c(v1v2 . . . vn+1) due to the definition of the
cost and part c) of Lemma 3.

First, we show that the algorithm terminates. The while-loop terminates because we
can use |U | as a termination function: |U | is increased by one in every run through
the loop and it is bounded from above by |V |. |V | itself is finite because M is assumed
to be finite. The for-loops terminate since they run over finite sets only.

To prove the correctness we will reason about intermediate results of the algorithm.
Therefore we introduce the concept of a maximal path starting from a node with
respect to. a given successor array. An array succ as in the above algorithm can
be interpreted as a the encoding of a function succ : V → V ∪̇{null} which assigns
every node to at most one successor. In an obvious manner this defines a graph
Gsucc = (Vsucc, Esucc) with Vsucc = V and (v1, v2) ∈ Esucc iff succ(v1) = v2. Then the
maximal path mp(v, succ) is the maximal (i.e. not prolongable) walk (sic!) starting
in v in Gsucc. Intuitively, mp(v, succ) starts in v and follows the instructions encoded

64

8.4 Target Models with Cumulative S-Dioids

Algorithm 8 Dijkstra-like Algorithm in Case of Edge Labels from a Cumulative
S-Dioid

Require: M = (((V,E), g), a) is a finite uniquely labelled target model with cumu-
lative associated s-dioid (D,

∑
, 0, ·, 1)

1: initialise dist as an array with indices from V and values from D
2: initialise succ as an array with indices from V and values from V
3: initialise U as set with elements from V
4: for all t ∈ V with a(t) = fin do
5: dist[t]← 1
6: succ[t]← null

7: end for
8: for all v ∈ V with a(v) = trans do
9: choose a t ∈ VT with ℓ(v, t) =

∑
t′∈VT

ℓ(v, t′)

10: dist(v)← ℓ(v, t)
11: succ(v)← t
12: end for
13: U ← VT

14: while U 6= V do
15: choose v /∈ U arbitrarily with dist(v) =

∑
v′ /∈U

dist(v′)

16: U ← U ∪ {v}
17: for all (u, v) ∈ E with u /∈ U do
18: if g(u, v) · dist(v) = dist(u) then
19: dist(u)← g(u, v) · dist(v)
20: succ(u)← v
21: end if
22: end for
23: end while
Ensure: ∀v ∈ V : dist(v) = d(v), succ encodes an optimal submodel of M

65

8 Target Models

in succ till it reaches a node without any further successor. Note that this definition
makes sense only if succ encodes an acyclic graph.

The proof is done via the combined invariant I ≡ I1 ∧ I2 ∧ I3 for the while-loop,
defined by:

1. I1 ≡ ∀u ∈ U : dist(u) = d(u),

2. I2 ≡ ∀u ∈ U : c(mp(u, succ)) = dist(u), and

3. I3 ≡ ∀u /∈ U : dist(u) = d(u) in M |U∪{u}.

I1 states that all nodes in the set U are already correctly labelled, i.e., the value of d
coincides with the one of dist on all nodes of U . According to I2, succ encodes optimal
walks starting in any node in U . For nodes outside of U , by I3 we know at least that
dist gives the target distance in M |U∪{u}, i.e., dist(u) equals the optimal cost of a
walk from u into VT whose inner nodes are all in U . Clearly, after the while-loop we
have U = V which implies the ensured properties due to I1 and I2.

Now we have to show that I is indeed an invariant of the while-loop. It clearly holds
after the assignment in Line 13 due to the assignments made during the preceding
for-loops. Let now v be the node chosen by the algorithm in Line 15. Because U is
modified in Line 16 we write U ∪ {v} and U − {v} to avoid misunderstandings, even
if this notation may be redundant.

In order to show that I1 holds after Line 22 we have to show that dist(v) = d(v) holds
(in Line 16 v is added to U , and the values of dist remain unchanged for all nodes in
U ∪ {v}). For the sake of contradiction we assume there is a walk w = vv2 . . . vm in
M with vm ∈ VT and c(w) = dist(v). Due to I3 this walk has an inner node which is
not in U − {v}, and denote by vi the last node on this walk not in U − {v}. Then
we have c(vivi+ . . . vm) ⊒ c(w) because of cumulativity, dist(w) ⊒ c(vivi+1 . . . vm)
and by transitivity of ⊒ we obtain dist(w) ⊒ c(w). Moreover, by assumption we have
c(w) = dist(v), which leads altogether to dist(w) = dist(v). But this is a contradiction
to the choice of v in Line 15.

For I3 we consider an arbitrary node u /∈ U ∪ {v} and show that after Line 22 the
equality dist(u) = d(u) in M |U∪{u,v} holds. So consider an optimal walk uu1u2 . . . uk

with uk ∈ VT in MU∪{u}. Then either u1 equals v or does not equal v. In Line 18 the
algorithm compares the costs of walks from u into VT with inner nodes in U −{v} to
the costs of walks from u into VT with v as second node. So the array dist is updated
consistently with I3. Clearly, by construction (mp(u, succ)) produces such an optimal
walk from u into VT , so I2 is also preserved.

This shows that every finite uniquely labelled target model with cumulative associated
s-dioid is refinable. But then every finite (not necessarily uniquely labelled) finitely

66

8.5 Target Models with Non-Cumulative S-Dioids

labelled target model is refinable due to Corollary 8.3.1: First construct its label-
optimised target model and refine it afterwards. The result is an optimal submodel
of the original one.

It remains to show that for every not-cumulative dioid there is a target model with it
as associated dioid which is not refinable. Therefore we consider the following target
model where a is assumed to be an arbitrary element of a non-cumulative dioid:

x y v
11

a

We show that contrary to the assumption the associated s-dioid has to be cumulative.
An optimal submodel can either contain the edge (y, x) or not. If it contains the edge
(y, x) we have 1 = c(yv) = c(yxyv) = a because every walk leading into v has to be
optimal, and hence a ⊑ 1 for arbitrary a. Since a was chosen arbitrarily the dioid is
cumulative. Assume now there is an optimal submodel which does not contain the
edge (y, x). Then in the original (not refined) target model d(y) = c(yv) has to hold
(because in the refined model only the walk yv from y to v exists), and the definition
of d yields c(yxyv) ⊑ c(yv), which implies a ⊑ 1. So in this case too the associated
s-dioid has to be cumulative. �

8.5 Target Models with Non-Cumulative S-Dioids

In analogy to above we consider first only uniquely labelled finite target models with-
out explicit mention. After this we will make the step to a more general class of target
models.

The result from Theorem 8.4.1 seems rather discouraging if we want to construct
optimal submodels of target models with associated non-cumulative s-dioids. But we
will see that there is a possibility to refine such target models if the associated labelled
graph does not contain negative cycles. A negative cycle is a cycle x1x2 . . . xn with
c(x1x2 . . . xn) = 1. Note that in our setting of general s-dioids multiplication need

not be commutative; so
n−1∏
i=0

li =
n−1∏
i=0

l(i+m)modn for an arbitrary l ∈ L(x1x2 . . . xn)

does not hold in general. To deal with this phenomenon, in [GM08b] the concept of a
pointed cycle is introduced. However, for our considerations this will not play a role.

If there is no negative cycle then there is always a path p between two nodes x and
y with c(p) = d(x, y). Here too this can be shown be removing cycles from any

67

8 Target Models

walk between x and y. Due to the absence of negative cycles this can not decrease
the cost (with respect to ⊑) of the walk. So from this follows that under the above
assumptions between two reachable nodes there is always a path which is an optimal
walk. In particular, between two reachable nodes there is always an optimal walk
with edge length at most |V | − 1.

In this case we can use an algorithm similar to the Floyd-Warshall algorithm. As a
first step we compute by means of Algorithm 9 the distances between every pair of
nodes and the successor of every node on an optimal path to every other node.

Algorithm 9 Floyd-Warshall-like Algorithm in the Case of Edge Labels from a
General Dioid and a Associated Graph without Negative Cycles

Require: M = ((({1..n}, E), g), a) is a finite uniquely labelled target model, M =
((({1..n}, E), g), a) is a finite uniquely labelled target model without negative
cycles and associated s-dioid (D,

∑
, 0, ·, 1)

1: initialise succ as an n× n-matrix with entries from V
2: for i← 1 to n do
3: for j ← 1 to n do
4: if (i, j) ∈ E then
5: dist[i, j] = ℓ(i, j)
6: else
7: dist[i, j] = 0
8: end if
9: succ(i, j)= null

10: end for
11: end for
12: for k ← 1 to n do
13: for i← 1 to n do
14: for j ← 1 to n do
15: if dist(i, k) · dist(k, j) = dist(i, j) then
16: dist(i, j) = dist(i, k) · dist(k, j)
17: succ(i, j)= succ(i, k)
18: end if
19: end for
20: end for
21: end for
Ensure: ∀ i, j ∈ V : dist(i, j) = d(i, j); succ encodes optimal walks

In this algorithm succ(i, j) has a similar meaning as in Algorithm 8; the difference is
that here no optimal walk from i into the target set VT is encoded but an optimal

68

8.6 Target Models and Bisimulations

walk from i to j.

The termination of the algorithm is clear. As an invariant for the outermost of the
three nested for loops we choose the assertion that dist(i, j) equals the cost of an
optimal walk from i to j whose inner nodes are nodes l with l < k, and that succ

encodes such a walk.

Before the first entry into the outermost for loop this invariant holds due to the
initialisation of succ, dist and k. Now consider the situation after a run through the
inner two nested loops. If there is an optimal walk from i to j which does not visit
the node k then dist(i, k) · dist(k, j) ⊒ dist(i, j) holds according to Lemma 8.2.1. In
the case of equality no update is necessary, so the algorithm has to consider only the
case dist(i, k) · dist(k, j) ⊒ dist(i, j). Here the new value of dist(i, j) is correct, again
due to Lemma 8.2.1, and since the newly found walk leads through k the succ-matrix
is also updated correctly. Conversely, if there is no optimal walk from i to j with k as
an inner node no changes have to be made. The algorithm also leaves dist and succ

untouched, since here the condition dist(i, k) · dist(k, j) = dist(i, j) becomes false (cf.
again Lemma 8.2.1). So the invariant is preserved.

The actual refinement is done in two steps:

1. First, we determine for every node i /∈ VT a target t(i) ∈ VT with d(i) =
d(i, t(i)). This can be done by computing d(i) =

∑
j∈VT

dist(i, j) and storing an

appropriate j ∈ VT .

2. Second, we keep all edges given by succ(i, t(i)) for every i /∈ VT .

By construction, the model obtained in this way is an optimal submodel.

8.6 Target Models and Bisimulations

Till now we know some conditions under which a target model is refinable. In this
section we investigate the interplay between cost, optimality, refinement and bisimu-
lation equivalences. The first step is the following lemma:

Lemma 8.6.1 Let M = (((V,E), g), a) be a target model and B a bisimulation equiv-
alence for M . Then for all v in V the target distances of v in M and v/B in M/B
coincide.

Proof: We chose an arbitrary node v ∈ V and denote the target distance of v in
M by dM (v) and the target distance of v/B in M/B by dM/B(v/B). To proof the

69

8 Target Models

equality dM (v) = dM/B(v/B) we show the two inequalities dM (v) ⊑ dM/B(v/B) and
dM/B(v/B) ⊑ dM (v).

So we fix an arbitrary v ∈ V and consider a walk w = v1v2 . . . vn in M with v1 = v
and vn ∈ VT . Let l ∈ L(w) be an arbitrary labelling of w. By Lemma 6.2.1 we know
that M and M/B are bisimilar, so by Lemma 6.1.1 there is walk wB = v1Bv

2
B . . . vnB

in M/B with v1 ∈ v1B and vnB ∈ (V/B)T . Additionally, we can chose this walk in such
a way that l ∈ (L/B)(wB) holds ((L/B)(wB) denotes the set of labellings of wB in
M/B). Hence the set of costs of all paths in M leading from v into VT is a subset of
the costs of paths in M/B leading from v/B into (V/B)T . This implies the inequality
dM (v) ⊑ dM/B(v/B).

The reverse inequality can be shown symmetrically (note that we did not use any
specific properties of B except that fact that M and M/B are bisimilar and that ∈
is a bisimulation between M and M/B). �

This lemma is needed in the proof of the following theorem:

Theorem 8.6.1 Let M = (((V,E), g), a) be a target model and B a bisimulation
equivalence for M such that M/B is finitely labelled. If (M/B)′o is an optimal target
submodel of the label optimised quotient (M/B)o then (M/B)′o\B is an optimal target
submodel of M .

Proof: Let w = v1v2 . . . vn be an arbitrary walk in (M/B)′o\B with vn ∈ VT . Due
to Theorem 6.3.1 (M/B)′o and (M/B)′o\B are bisimilar, so by Lemma 6.1.1 there is
the walk wB = v1/Bv2/B . . . vn/B in (M/B)′o (note that ∈ is a bisimulation between
(M/B)′\B and (M/B)′, and that ∈ is even a function). Because (M/B)′o is an optimal
target submodel of M/B we have dM/B(v

1/B) = cM/B(wB) due to Corollary 8.3.1.
Lemma 8.6.1 yields dM (v1) = dM/B(v

1/B), so we next want to show the equality
cM/B(wB) = cM (w) which implies that w is an optimal walk in M .

For this purpose consider an arbitrary labelling ℓ1ℓ2 . . . ℓn−1 ∈ L(w) of w in M . By
Lemma 6.2.2 we have ℓi ∈ (g/B)(vi/B, vi+1/B) for all i ∈ {1 . . . n − 1}. Because
(M/B)o is label optimised the inequalities ℓi ⊑ (g/B)o(v

i/B, vi+1/B) hold for all i ∈
{1 . . . n−1}. But this implies cM (w) ⊑ c(M/B)o(w/B) due to isotony of multiplication.
As shown in the proof of Lemma 8.2.2 we have c(M/B)o(w/B) = c(M/B)(w/B), so it

remains to show the reverse inequality c(M/B)(w/B) ⊑ cM (w). Let now ℓ1Bℓ
2
B . . . ℓn−1

B

be the unique labelling of wB in (M/B)o. Because w is a walk in (M/B)′o\B we have
by construction ℓiB ⊒ ℓi for all i ∈ {1 . . . n − 1}. Hence the reverse inequality holds
by isotony of multiplication.

This shows that every walk in (MB)
′
o\B leading into VT is optimal, so in order so

satisfy Definition 8.3.1 we have to show that in (MB)
′\B the target set is reachable

from every node outside of it. But this is an easy consequence of the fact that (M/B)′o

70

8.6 Target Models and Bisimulations

a b

c d

1 1

2 2

ab

cd

{1, 2}

ab

cd

1

a b

c d

1 1

Figure 8.5: A uniquely labelled Target Model (top left) with not uniquely labelled coarsest
quotient (top right), its label optimised coarsest quotient (bottom left) and its expansion
(bottom right)

is a target model and Lemma 6.1.1 (note that B is left-total!). �

Remark 1: Clearly the condition that M/B is finitely labelled requires that M is
also finitely labelled because of Lemma 6.2.2. �

Remark 2: This Theorem corrects Theorem 4.1. in [Glü11]. The claim made
there that the expansion of an optimal submodel of the coarsest quotient is an
optimal submodel is refuted by Figure 8.5. If we interpret the labels in the dioid
(IR+

0 ∪{∞}, inf,∞,+, 0) (i.e., we consider shortest paths) the top left target model is
not optimal because there is the walk ad which is clearly not optimal. Its coarsest
quotient in the top right is optimal because the walk {ab}{cd} has cost 1 despite the
fact that the edge ({ab}, {cd}) bears the label {1, 2}. Its expansion, however, yields
the original model which is not optimal. On contrary, the label optimised submodel
of the coarsest quotient in the bottom left is also an optimal submodel. Its expansion
(in whose construction we have to obey properly Point 2 and 3 of Definition 6.3.1) in
the bottom right is indeed an optimal submodel of the initial target model. �

71

8 Target Models

a be

cf

dg
1

5

3

4

Figure 8.6: A Coarsest Quotient

Theorem 8.6.1 is the central theorem of this section since it gives raise to the generic
Algorithm 10.

Algorithm 10 Refining a Target Model via Quotient Construction

Require: M = (((V,E), g), a) is a target model and B is a bisimulation equivalence
for M such that M/B is a finite and finitely labelled target model free of negative
cycles

1: (M/B)o ← label optimised submodel of (M/B)
2: (M/B)′o ← optimal target submodel of (M/B)o
3: M ′ ← (M/B)′o\B

Ensure: M ′ is an optimal target submodel of M

The choice of B is arbitrary within the conditions posed on it in the requirement.
The refinement in Line 2 is possible by one of the proposed algorithms (Algorithm 8
or Algorithm 9) due to the requirements on M/B (note that the case of a cumulative
s-dioid is covered by the absence of negative cycles).

We will illustrate this algorithm a second time (after Remark 2) on the already known
target model from Figure 8.1. Its quotient is shown in Figure 8.6. An optimal
target submodel of this quotient with respect to the shortest path problem is depicted
in Figure 8.7. Eventually, its expansion yields the optimal target submodel from
Figure 8.3.

Algorithm 10 is reasonable in two cases (both cases provided that M/B is finitely
labelled): First, if M is infinite and M/B is finite, and second, if M is finite and
M/B is significantly smaller than M .

In the first case the quotient M/B (and also the computation of the expansion
(M/B)′\B) has to be done via symbolic execution.

If M is finite one will use for B of course the coarsest bisimulation for M because here
the quotient M/B will become smaller as under the use of other possible choices for

72

8.6 Target Models and Bisimulations

a be

cf

dg
4

3

4

Figure 8.7: An Optimal Quotient Target Submodel

B. Clearly, the expansion in Line 3 can be executed in time O(|V |+|E|). The coarsest
quotient can be determined in O(|E| · log(|V |) · |L|) time (see Chapter 4), so a speed
up (compared to the immediate execution of a refinement algorithm) can be expected
only if the runtime of the refinement algorithm in Line (5) is in Ω(|E| · log(|V |).

If we use Algorithm 8 for the refinement we will hardly achieve an asymptotic speed
up. The runtime of this algorithm is in O(|V | · log(|V |)+ |E|) so under the reasonable
assumption |E| ∈ Ω(|V |) the computation of the coarsest quotient will dominate
the execution of the refinement algorithm. However, this consideration abstract of
constant factors, so in exceptional cases Algorithm 10 may offer an improvement to
the immediate application of Algorithm 8.

However, in the case of the Floyd-Warshall like Algorithm 9 a speed up is possible.
To see this we fix an arbitrary finite target model M = (((V,E), g), a) with V =
{v1, v2, . . . , vn} and define the model family (Mm)m∈IN+ as follows:

1. Vm =
⋃

1≤k≤m

{vikm | v
i ∈ V },

2. Em =
⋃

1≤k≤m

{(vikm , vjk) | (vi, vj) ∈ E},

3. gm(vikm , vjkm) = g(vi, vj) for all (vikm , vjkm) ∈ Em and

4. am(vikm) = a(vi) for all vikm ∈ Vm.

Intuitively, Mm consists of m copies of M , so we have clearly |Vm| = m · |V | and
|Em| = m · |E| and hence |Em| ∈ Θ(|Vm|). Moreover, the coarsest quotient Mm/Bm

of every model Mm is isomorphic to the coarsest quotient M/B of M (cf. the definition
from Section 5). The situation is sketched in Figure 8.8.

The computation of the coarsest bisimulation needsO(|Em|· log(|Vm|)) =O(|Vm| · log(|Vm|))
time. Line 1 and 2 of Algorithm 10 can be carried out in constant time because the
algorithm has to deal with isomorphic models, therefore its execution time is indepen-
dent of m. Line 3 can be executed in O(|Vm|+ |Em|) = O(Vm) time, thus the overall

73

8 Target Models

v1

v2v3 v4

M/B

a

b

v1 v2

v3 v4

M

a

a

b

b

v112 v212

v312 v412

v122 v222

v322 v422

M2

a

a

b

b

a

a

b

b

v113

v313

v213

v413

v123

v323

v223

v423

v133

v333

v233

v433

M3

a

a

b

b

a

a

b

b

a

a

b

b

Figure 8.8: A Part of a Model Family Mm with coarsest Quotients isomorphic to M/B

74

8.6 Target Models and Bisimulations

runtime is here in O(|Vm| · log(|Vm|)). In contrast, the immediate application of Al-
gorithm 9 to Mm takes O(|Vm|3) time, so Algorithm 10 leads to a better asymptotic
runtime as Algorithm 9.

This constructed example does not state anything about real life examples. The speed
up will be the higher the the more the size of the original model M is decreased by
‘dividing’ it by the bisimulation equivalence B. Unfortunately, there is no known
technique to estimate the number of equivalence classes of the coarsest bisimulation
(which is the key quantity for measuring the shrinking of M compared to M/B) which
performs better than the computation of the coarsest bisimulation itself.

There are some heuristic considerations under which circumstances the quotient M/B
is smaller than the model M . This holds for models with repeated appearance of
identical structures. However, in the case of shortest walks, geographic examples from
the real world probably lack this property. Even the road map of highly structured
and planned cities as Manhattan, Canberra or Islamabad do not seem to be adequate
examples (they have to obey conditions posed by nature like rivers or mountains).
An area of application could be problems in chip design. There a lot of repeated
and reused structures can be expected by construction. A first impression gives
the circuit of the Intel 400 processor from 1971 which can be found on the Intel
homepage (see [Intb, Inta]). Unfortunately, most processor circuits are kept secret by
the corporations for obvious reasons.

75

Chapter 9

Linear Fixpoints

In this section we investigate the interplay between bisimulations and
linear fixpoint equations. It is a well known fact that optimality problems
in graphs can be described using fixpoints functions of the form f(x) =
Ax + b, where A is a matrix with entries from an s-dioid, and b and x
are vectors with analogous entries. This is described e.g. in [GM08b];
Bellman’s equations (see e.g. [Jun05]) are of this type. Ironically, in the
original paper [Bel58] these equations are called nonlinear. The term
nonlinear refers there to classical linear algebra over the real numbers
with traditional addition and multiplication. We will see that a certain
kind of linear fixpoint equations is compatible with bisimulations.

9.1 Theoretical Considerations

It is a standard approach in graph theory to identify a graph with its adjacency matrix.
Because we want to deal also with infinite graphs we will introduce a straightforward
generalisation of this:

Definition 9.1.1 Let S be an arbitrary (possibly infinite or even uncountable) set
and (D,

∑
, 0, ·, 1) an s-dioid. An S-matrix over D is a mapping A : S × S → D. A

column S-vector over D is a mapping v : S×{∗} → D, where {∗} denotes an arbitrary
singleton set. Analogously, a row S-vector over D is a mapping v : {∗} × S → D.

9 Linear Fixpoints

If S is clear from the context it can also be omitted. We also use the term vector as
an abbreviation for row or column vector. The set of all S-matrices over D is denoted
by DS×S , the set of all column S-vectors over D by DS×∗, and the set of all row
S-vectors over D by D∗×S .

As usual, we denote matrices by upper case letters A, B, . . . with possible indices
and other modifiers. Vectors of both kinds are denoted by lower case letters b, x, v,
. . ., depending on the usage (b denotes usually a constant vector, x a variable of a
function and v an arbitrary vector). Whether a lower case letter denotes a column or
a row vector becomes clear from the context. We write briefly Ast instead of A(s, t)
for a matrix A, and vs instead of v(s, ∗) and v(∗, s) for a vector. The sum v1 + v2 of
two S-column or two S-row vectors v1 and v2 over the same s-dioid (D,

∑
, 0, ·, 1) is

an S-column or S-row vector, resp., over D, defined by (v1 + v2)s =df v1s + v2s .

Obviously, an S-vector b over an s-dioid (D,
∑

, 0, ·, 1) corresponds to a mapping from
S into D. So it induces a partition S = {Si | i ∈ I} of S, defined by ∀i, j ∈ I :
i = j ⇔ ∀si ∈ Si∀sj ∈ Sj : bsi = bsj . This is called the partition induced by b.

With these writing conventions we define the multiplication of a matrix and a vector
in a natural way:

Definition 9.1.2 Let A be an S-matrix over an s-dioid (D,
∑

, 0, ·, 1), and let v and
w be an S-column and an S-row vector resp. over D. Then we define the product
A · v as an S-column vector over D, given by (A · v)s =

∑
t∈S

Ast · vt. Analogously, we

define the product w ·A as an S-row vector over D, given by (v ·A)s =
∑
t∈S

vt ·Ats.

In the adjacency matrix of a graph often the value ∞ is used in order to express the
nonexistence of an edge. However, this does not fit our dioid based framework in gen-
eral. The use of ∞ in the common setting is motivated by the shortest path problem
(if there is no walk between two nodes then their distance equals ∞). The reason is
that

∑
∅ =∞ holds in the s-dioid (IR+

0 ∪{∞}, inf,∞,+, 0) (which corresponds to the
shortest walk problem). This gives rise to the following definition:

Definition 9.1.3 Let M = (((V,E), g), a) be a uniquely labelled model over an s-
dioid (D,

∑
, 0, ·, 1). Then its adjacency matrix A is defined by Av1v2 = g(v1, v2) if

(v1, v2) ∈ E and Av1v2 = 0 otherwise (recall the convention that for uniquely labelled
models g may deliver elements of L instead of subsets). The adjacency matrix of a
uniquely labelled graph G = ((V,E), g) is defined analogously.

The quotient of a uniquely labelled model or graph need not be uniquely labelled itself
(cf. Figure 6.2), so the concept of the adjacency matrix is not directly compatible with
bisimulations. To cover this problem for a uniquely labelled model M = (((V,E), g), a)

78

9.1 Theoretical Considerations

with adjacency matrix A and a bisimulation B for M we define the quotient matrix
A/B by (A/B)v/Bw/B =

∑
{Av′w′ | v′ ∈ v/B,w′ ∈ w/B}. For this construction we

have the following lemma:

Lemma 9.1.1 Let M = (((V,E), g), a) be a uniquely labelled model over an s-dioid
(D,

∑
, 0, ·, 1), A its adjacency matrix and B be a bisimulation equivalence for M .

Then for every (v, w) ∈ E the equality
∑

w′∈w/B

Avw′ = (A/B)(v/B)(w/B) holds.

Proof: It suffices to show the equality
⋃

w′∈w/B

g(v, w′) = g/B(v/B,w/B) for ar-

bitrary (v, w) ∈ E. First, we pick an arbitrary ℓ ∈
⋃

w′∈w/B

g(v, w′). Then there

is a w′ ∈ w/B with ℓ = g(v, w′) (recall that M is uniquely labelled). This im-
plies ℓ ∈ g/B(v/B,w/B) by definition of g/B (cf. Definition 6.2.1). Conversely, let
ℓ ∈ g/B(v/B,w/B) be arbitrarily chosen. Then there are v′ ∈ v/B and w′′ ∈ w/B
with g(v′, w′) = ℓ. Because B is an equivalence we also have v ∈ v/B and hence by
definition v′Bv. But by definition of a bisimulation there has to be a w′ with w′′Bw′

such that v
ℓ
−→g w′ holds, which implies ℓ ∈

⋃
w′∈w/B

g(v, w′). �

After we established a connection between adjacency matrices and bisimulations we
will do the same for vectors and bisimulations. So given a model M = (((V,E), g), a),
a bisimulation B for M and a row (V/B)-vector we define the expansion xB\B of xB

as a row V -vector, given by (xB\B)(∗, v) =df xB(∗, v/B). The expansion of a row
S-vector is defined analogously.

Theorem 9.1.1 Let M = (((V,E), g), a) and A be as in Lemma 9.1.1, let b be a
V -column vector over D and B be a bisimulation equivalence for M respecting the
partition induced by b. Let xB be an (V/B)-column vector over D such that xB =
(A/B)xB + b/B holds. Then also xB\B = A(xB\B) + b holds.

Proof: First we argue as follows:

xB\B = A(xB\B) + b ⇔
{ pointwise equality }

∀v ∈ V : (xB\B)v = (A(xB\B))v + bv ⇔
{ definition of matrix product }

∀v ∈ V : (xB\B)v =
∑

w∈V

Avw · (xb\B)w + bv

To get rid of the annoying universal quantifier we now fix an arbitrary v ∈ V and
argue further:

79

9 Linear Fixpoints

(xB\B)v =
∑

w∈V

Avw · (xb\B)w + bv ⇔

{ definition of expansion of a vector }
(xB)v/B =

∑
w∈V

Avw · (xb\B)w + bv ⇔

{ assumption xB = (A/B)xB + b/B, pointwise equality,
definition of matrix product }∑

w/B∈V/B

(A/B)v/Bw/B · (xB)w/B + (b/B)v/B =
∑

w∈V

Avw · (xb\B)w + bv

Because B is a bisimulation respecting the partition induced by b we have (b/B)v/B =
bv, so it suffices to show the equality

∑
w/B∈V/B

(A/B)v/Bw/B · (xB)w/B =
∑

w∈V

Avw ·

(xb\B)w. This can be shown as follows:
∑

w∈V

Avw · (xb\B)w =

{ definition of expansion of a vector }∑
w∈V

Avw · (xb)w/B =

{ sum splitting }∑
w/B∈V/B

∑
w∈w/B

Avw · (xb)w/B =

{ Lemma 9.1.1, distributivity }∑
w/B∈V/B

(A/B)v/Bw/B · (xB)w/B,

and we are done. �

By symmetric argumentation we obtain the following corollary:

Corollary 9.1.1 Let M = (((V,E), g), a) be a uniquely labelled model over an s-
dioid (D,

∑
, 0, ·, 1), A its adjacency matrix, b a V -row vector over D and B be a

bisimulation equivalence for M respecting the partition induced by b. Let xB be a
(V/B)-row vector over D such that xB = xB(A/B) + b/B holds. Then also xB\B =
(xB\B)A+ b holds.

Theorem 9.1.1 and Corollary 9.1.1 show under which conditions linear fixpoint equa-
tions are compatible with bisimulations. In general, such equations of the form
x = Ax + b or x = xA + b have more than one solution in x. For example, con-
sider the matrix 1V×V given by 1V×V

vw = 0 for all v, w ∈ V with v 6= w and 1V×V
vv = 1

for all v ∈ V , and the column vector 0V , given by 0Vv = 0 for all v ∈ V . Then every
V -column vector is a solution of x = 1V×V x+ 0v. However, if we introduce an order
≤V on all V -vectors over (D,

∑
, 0, ·, 1), given by v1 ≤V v2 ⇔df ∀x ∈ V : v1x ≤ v2x, we

have exactly one least solution with respect to ≤V . This is due to the fact that DV ×∗

and D∗×V ordered by ≤V form complete lattices, and that the functions f(x) = Ax+b

80

9.1 Theoretical Considerations

and g(x) = xA + b are isotone with respect to ≤V . So the least fixpoints νf and νg
of f and g can be written as νf =

∑
i≥0

f i(0V) and νg =
∑
i≥0

gi(0V), where
∑

denotes

the supremum with respect to ≤V , f i and gi denote the i-fold application of f and
g, and 0V is the V -vector, given by (0V)v = 0 for all v ∈ V .

This is due to the famous fixpoint iteration theorem of Kleene, named after [Kle52].
There it occurs in the context of partial recursive functions in computability theory.
A more modern formulation in the framework of lattices was given a few years later
in [Tar55]. However, the intellectual authorship remains open.

By means of Theorem 9.1.1 and Corollary 9.1.1 we know how to compute a fixpoint of
a linear equation from a fixpoint of a quotient. The next theorem gives a result con-
necting the least fixpoints of an equation and its quotient (where the term ‘least’ has
to be read in the sense of the above explanations):

Theorem 9.1.2 Let M = (((V,E), g), a), (D,
∑

, 0, ·, 1), A, b and B as in Theo-
rem 9.1.1. Let y be the least fixpoint of the linear function f(x) = Ax+ b, and denote
by yB be the least fixpoint of the function fB(xB) = (A/B)xB+b/B. Then the equality
y = yB\B holds.

Proof: As already mentioned above, we have the equations νf =
∑
i≥0

f i(0V) and

νfB =
∑
i≥0

f i
B(0V/B) for the least fixpoints νf and νfB of f and fB, resp.

We will show that for all i ∈ IN the equality f i
B(0V/B)\B = f i(0V) holds. This implies

the claim because both ≤V and ≤V/B are product orders, so the suprema with respect
to these orders are the pointwise suprema with respect to the dioid order ≤. This
equality can be shown by simple induction:

Induction base: Here we have to show 0V/B\B = 0V which is trivially true due
to the definition of the expansion.

Induction step: We fix an arbitrary v ∈ V and assume f i
B(0V/B)\B = f i(0V)

for an arbitrary fixed i ∈ IN. Then we have to show the equality A(f i(0V))v + bv =
(A/B)(f i

B(0V/B))v/B+(bB)v/B, according to the definition of the expansion operation

\B. Because B respects the partition induced by b the equality bv = (bB)v/B holds

trivially. So it suffices to show the equality A(f i(0V))v = (A/B)(f i
B(0V/B))v/B . This

can be done by the following calculation:

A(f i(0V))v =
{ definition of matrix multiplication }∑

w∈V

Avw(f
i(0V))w =

{ sum splitting }

81

9 Linear Fixpoints

∑
w/B∈V/B

∑
w∈w/B

Avw(f
i(0V))w =

{ induction hypothesis, definition of \B }∑
w/B∈V/B

∑
w∈w/B

Avw(f
i
B(0V/B))w/B

=

{ Lemma 9.1.1, distributivity }∑
w/B∈V/B

(A/B)v/Bw/B(f
i
B(0V/B))w/B

=

{ definition of multiplication }
(A/B)(f i

B(0V/B))v/B

So the proof is finished. �

Intuitively this proof executes Kleene’s fixpoint iteration for νf and νfB in parallel on
a model and a quotient of it. In every step the values assigned to a node v and its
associated quotient node v/B coincide, so the sequences have the same supremum.
Note also the similarity to the proof of Theorem 7.2.1.

As above, we obtain the following corollary by a symmetric argumentation:

Corollary 9.1.2 Let M = (((V,E), g), a) be a uniquely labelled model over an s-
dioid (D,

∑
, 0, ·, 1), A its adjacency matrix, b a V -row vector over D and B be a

bisimulation equivalence for M respecting the partition induced by b. Let y be the
least fixpoint of the linear function f(x) = xA+ b, and let yB be the least fixpoint of
the function fB(xB) = xB(A/B) + b/B. Then the equality y = yB\B holds.

9.2 Interpretations

The fixpoints of linear equations are closely connected with target models. Consider
a uniquely labelled target model M = (((V,E), g), a) over an s-dioid (D,

∑
, 0, ·, 1),

let A be its adjacency matrix and let b be the V -row vector over D, defined by bv = 0
for all v ∈ V with a(v) = trans, and bv = 1 for all v ∈ V with a(v) = fin. In
this setting, the target distance d(x) can also be viewed as a V -row vector over D.
Moreover, this vector is the least solution in x of the linear equation x = xA+ b (see
e.g. [BHZ77, Car71, GM08b]). This fact and Corollary 9.1.2 give an alternative proof
of Theorem 8.6.1.

The question arises whether a linear equation x = xA+b has an interpretation similar
to the already mentioned one as in [BHZ77, Car71, GM08b] if b takes other values
except 0 and 1. Such kind of b’s could be used to model some kinds of reward, penalty
or import at a given node.

Another nearby question is whether the ideas from this chapter can be carried over to
classical linear algebra. Unfortunately, with high probability the answer is ‘No’. The

82

9.2 Interpretations

algebraic properties of multiplication and addition in both contexts differ too much.
The highest obstacle will be the idempotency of addition which plays an important
role in all proofs here.

83

Chapter 10

Stochastic Games

This chapter deals with stochastic games, a problem for which no prov-
ably polynomial algorithm is known. The only known fact about its
complexity is that it is in NP ∩ coNP . We first give an introduction
to stochastic games and their properties, and investigate afterwards its
compatibility with the quotient construction.

10.1 An Introduction to Stochastic Games

The origin of stochastic games lies in the paper [Sha53]. There two players make,
in every position from a finite position set, independently a choice between a finite
number of alternatives. With a certain probability, depending on the position and
the choices made by the players, the game stops, or the game is continued in other
positions with associated probabilities. We will consider a similar model, which was
also investigated in [Con] and [Con92]. The definition there is translated into our
model formalism as follows:

Definition 10.1.1 A simple stochastic game (SSG) is a model M = (((V,E), g), a)
with g(e) = ∗ for all e ∈ E and a : V → {max,min, average, 0, 1}. For a, the re-
strictions {v ∈ V | a(v) = 0} = {v ∈ V | a(v) = 1} = 1 and {v ∈ V | a(v) = 0} ∩
{v ∈ V | a(v) = 1} = ∅ hold. Moreover, every node v with a(v) ∈ {max,min, average}
has an outdegree in {1, 2}, and every node v with a(v) ∈ {0, 1} has no outgoing edge.

10 Stochastic Games

We abbreviate the sets {v ∈ V | a(v) = max}, {v ∈ V | a(v) = min} and {v ∈ V | a(v) =
average} by Vmax, Vmin and Vaverage, resp., and call their elements max , min and average
nodes. The nodes v with a(v) = 0 and a(v) = 1 are called the 0-sink and 1-sink,
resp., are denoted by sink0 and sink1 and are referred to as the sink nodes of M .
It will become clear that the edge labels are here not of interest; so we label them
with an arbitrary value. In contrast to the definition in [Con] and [Con92] we allow
outdegrees in {1, 2} for no-sink nodes (there these outdegrees have to be exactly 2).
The reason will become clear when we consider quotients of simple stochastic games.

The graph of an SSG is used as a game base for two players, a min-player and a max-
player. Every player chooses a strategy, corresponding to a subset of E, before the
game starts. The min-player chooses a subset τ ⊆ (Vmin×V)∩E such that every node
in Vmin has exactly one outgoing edge in τ . Symmetrically, the max-player chooses
a subset σ ⊆ (Vmax × V) ∩ E such that every node in Vmax has exactly one outgoing
edge in σ. The strategy of the min-player is called min-strategy, of the max-player
max-strategy.

A pair (σ, τ) for a SSG M = (((V,E), g), a) induces a model Mσ,τ = (((Vσ,τ , Eσ,τ),
gσ,τ), aσ,τ), given by Vσ,τ = V , Eσ,τ = σ ∪̇ τ ∪̇ (Vaverage × V) ∩ E. Intuitively, Mσ,τ

arises from M by removing the edges which were discarded by the players when
choosing their strategies σ and τ . A special requirement we will impose from now
on for every SSG M is that for every pair (σ, τ) of max- and min-strategies there is
a walk in Mσ,τ from an arbitrary node into a sink node. This property is also called
stopping. In this case, for every pair of max- and min-strategies (σ, τ) a random walk
in Mσ,τ reaches a sink node with probability 1.

After the players made their strategy choices σ and τ , a token is initially placed on
an arbitrary node v ∈ V and moved along the edges of Mσ,τ till it reaches a sink
node. On a max or min node the token is moved along the only outgoing edge. If the
token is on an average node with one outgoing edge it is moved along this edge. On
an average node with two outgoing edges one of the edges is chosen randomly with
probability 1

2 each and the token is moved along this edge. If the token reaches the
0-sink the min-player wins, and the max-player wins if it reaches the 1-sink.

For a node v and a pair of strategies (σ, τ) we define the value valσ,τ of v with respect
to (σ, τ) as the probability that the max-player wins if the strategies σ and τ were
chosen and the token was initially placed on v. Given a SSG and a pair of strategies
the values with respect to the given strategies can be computed in polynomial time.
The optimal value val(v) of a node v is then defined by val(v) = max

σ
min
τ

valσ,τ .

This definition may seem asymmetric due to the order of the max- and min-operators,
but Shapley shows in [Sha53] the equality max

σ
min
τ

valσ,τ = min
τ

max
σ

valσ,τ . A max-

strategy σ is called optimal if val(v) = min
τ ′

valσ,τ ′ holds. An optimal min-strategy is

86

10.1 An Introduction to Stochastic Games

max1

max2

min1

min2

avg

sink0

sink1

max1

max2

min1

min2

avg

sink0

sink1

Figure 10.1: An SSG (left) and the result after choosing a pair of strategies (right)

defined symmetrically.

The SSG problem as a decision problem is to decide whether the optimal value of a
given node is greater than or equal to 1

2 . This problem is in NP ∩ coNP , as shown
first in [Con92]. Moreover, there is no known algorithm for this problem running
in polynomial time. In contrast, given a max-strategy σ the computation of a min-
strategy τ satisfying for all nodes v the equality valσ,τ (v) = min

τ ′

valσ,τ ′(v) can be done

in polynomial time by means of linear programming (the associated linear program
is constructed in [Der72], and its solvability in polynomial time is shown in [Kya66]).
Such a min-strategy is called optimal with respect to σ.

An example for an SSG is given in the left part of Figure 10.1. The nodes are
captioned in a natural way, i.e. the set of max nodes is {max1,max2}, the min nodes
are {min1,min2}, there is only one average node, namely avg, and the 0- and 1-sink
are sink0 and sink1.

The right part of Figure 10.1 shows the situation after the players chose the pair of
strategies (σ, τ) = ({(max1,min1), (max2,min1)}, {(min1, avg), (min2, sink0)}). Clearly,
we have valσ,τ (sink0) = 0 and valσ,τ (sink1) = 1. Hence we have also valσ,τ (min2) =
0. Since at the node avg both edges are chosen with probability 1

2 each, we have
valσ,τ (avg) = 1

2 . Therefore we obtain valσ,τ (min1) = valσ,τ (max1) = valσ,τ (max2)
= 1

2 . A general method for determining the values with respect to a given pair of
strategies can be derived from the theory of Markov processes.

However, it is obvious that the min-player can obtain a better strategy τ ′ by choosing
(min1, sink0) instead of (min1, avg). Then the values of min1, max1 and max2 with
respect to the new strategy pair (σ, τ ′) become zero instead of 1

2 . It is also easy
to see that τ ′ is an optimal min-strategy, as well as σ is an optimal max-strategy

87

10 Stochastic Games

(unfortunately for him, the max-player can not do better). So we have val(min1) =
val(min2) = val(max1) = val(max2) = val(sink0) = 0, val(avg) = 1

2 and val(sink1) =
1.

An important fact for our further considerations is that the optimal values are the
unique solutions of the following system of equations:

val(i) = val(j) if i has outdegree 1
val(i) = max{val(j), val(k)} if i is a max node with children j and k
val(i) = min{val(j), val(k)} if i is a min node with children j and k
val(i) = 1

2 (val(j) + val(k)) if i is an average node with children j and k
val(i) = 0 if i is a 0-sink
val(i) = 1 if i is a 1-sink

We call these equations optimality equations .

Remark: In [Con] all nodes except the sink nodes are restricted to have exactly
two outgoing edges. Consequently, the first optimality equation is not given there.
However, there is an easy construction which shows that for every SSG according to
Definition 10.1.1 there is an ‘equivalent’ SSG according to [Con]. Therefore take a
look at the left part of Figure 10.2. Given an SSG M in our sense, we introduce for
each node v1 with exactly one outgoing edge to v2 a new average node avg and add
the edges shown in Figure 10.2. This construction yields an SSG M ′ in the sense
of [Con]. Once the token reaches v1 it will in both SSG’s reach the node v2 with
probability 1 either directly or after some visits of avg. Hence the optimal values
of v1 in M and M ′ coincide. Furthermore, we can apply now the equations given
in [Con] (corresponding to the last five optimality equations in our sense) to v1 in
M ′.

If v1 is an average node this yields the system

val(v1) = 1
2 (val(v

1) + val(avg))
val(avg) = 1

2 (val(v
1) + val(v2))

Elementary algebra leads to val(v1) = val(v2). If v1 is a min node we get the system

val(v1) = min{val(v2), val(avg)}
val(avg) = 1

2 (val(v
1) + val(v2))

Assume first that val(v1) < val(v2). Then we have val(v1) < val(avg) < val(v2).
This implies val(v1) = min{val(v2), val(avg)} = val(v2) which contradicts the as-
sumption val(v1) < val(v2). Symmetrically the case val(v1) > val(v2) can be ruled
out, so val(v1) = val(v2) has to hold. In an analogous manner we can obtain

88

10.2 Stochastic Games and Bisimulation Quotients

v1 v2 v1 v2

avg

Figure 10.2: Replacing of a single outgoing edge

val(v1) = val(v2) if v1 is a max node, which justifies our first optimality equation. �

10.2 Stochastic Games and Bisimulation Quotients

Because SSG’s are defined as models we can apply the tools from Section 6. In
particular, we could try to construct a quotient of an SSG. However, we have to
ensure that due to the constraints posed in Definition 10.1.1 on the nodes’ degrees
this operation is well-defined and yields again an SSG. For this purpose we need the
following lemma:

Lemma 10.2.1 Let M = (((V,E), g), a) be a model and B a bisimulation equivalence
for M . Then for every node v ∈ V the following facts about its outdegree dout(v) hold:

a) dout(v) ≥ dout(v/B)

b) dout(v) > 0⇒ dout(v/B) > 0

The outdegree dout(v/B) has to be understood in M/B.

Proof: We fix an arbitrary v ∈ V and argue as follows:

a): Let (w1/B), (w2/B), . . ., (wn/B) with n = dout(v/B) be the successors of (v/B)
in M/B. Due to Lemmata 6.2.1 and 6.1.1 there have to be nodes ŵ1, ŵ2, . . ., ŵn in
V with ŵi ∈ (wi/B) and (v, ŵi) ∈ E for all i ∈ {1 . . . n}. Because B is an equivalence
the sets (w1/B), (w2/B), . . ., (wn/B) are disjoint and hence the nodes ŵ1, ŵ2, . . .,
ŵn are distinct, which implies the claim.
b): Let ŵ be an arbitrary successor of v. Again due to Lemmata 6.2.1 and 6.1.1 there
is a node (w/B) such that (w/B) is a successor of (v/B) in M/B (more precisely,
(v/B, ŵ/B) ∈ E/B holds). �

This lemma shows that the quotient of an SSG is again an SSG. The left part of Fig-
ure 10.3 show the coarsest quotient of the SSG from Figure 10.1 with self-explanatory

89

10 Stochastic Games

max12 min12

avg

sink0

sink1

max12

0

min12

0

avg1
2

sink0

0

sink1 1

Figure 10.3: A quotient SSG (left) and the result after choosing a pair of optimal strategies
(right), together with optimal node values

node captions. In this quotient, the node max12 has an outdegree of 1. This phe-
nomenon was the reason for the difference in the definition of an SSG between [Con92]
and Definition 10.1.1.

Our goal is to construct a pair of optimal strategies, or equivalently, the node values for
an SSG via its quotient. We will have to be cautious since the straightforward expan-
sion of an optimal strategy in general does not yield a valid strategy. So the expansion
of the max-strategy from the right part of Figure 10.3 in the spirit of Definition 6.3.1
would yield the set of edges {(max1,min1), (max1,min2), (max2,min1), (max2,min2)},
which is no max-strategy by definition. However, we will see that the node values
are compatible with the quotient and expansion operation. This is the content of the
following theorem:

Theorem 10.2.1 Let M = (((V,E), g), a) be an SSG and B a bisimulation equiv-
alence for M , denote by valB the optimal value function in M/B and by val the
optimal value function in M . Define the function valB\B : v → [0, 1] by (valB\B)(v)
= valB(v/B). Then for every node v ∈ V the equality val(v) = (valB\B)(v) holds.

Proof: We fix an arbitrary v ∈ V and show that valB\B fulfills the optimality
equations. Then val and valB\B coincide due to the uniqueness of the optimal value
function. To this purpose we make the following case distinctions:

a) v/B is an average node with outdegree 1 and v has outdegree 2.

b) v/B is an average node with outdegree 1 and v has outdegree 1.

c) v/B is an average node with outdegree 2.

d) v/B is a max (min) node with outdegree 1 and v has outdegree 2.

90

10.2 Stochastic Games and Bisimulation Quotients

e) v/B is a max (min) node with outdegree 1 and v has outdegree 1.

f) v/B is a max (min) node with outdegree 2.

g) v/B is a sink node.

Case a): Let w/B be the successor of v/B in M/B, and let w1 and w2 be the successors
of v in M . By Lemmata 6.2.1 and 6.1.1 we have w1/B = w2/B = w/B. Because
valB is an optimal value function the equality valB(v/B) = valB(w/B) holds, so by
construction we obtain (valB\B)(v) = (valB\B)(w1) = (valB\B)(w2). Hence the
condition (valB\B)(v) = 1

2 ((valB\B)(w1) + (valB\B)(w2)) is fulfilled.

Case b): Let w/B be the successor of v/B in M/B. Then there is a w′ ∈ w/B which
is the only successor of v in M . Because valB fulfills the optimality equations we have
valB(v/B) = valB(w/B). So by construction of valB\B we have in accord with the
optimality equations also (valB\B)(v) = (valB\B)(w′).

Case c): Let w1/B and w2/B be the successors of v/B in M/B. Due to Lemma 10.2.1
v has an outdegree of at least 2, and because M is an SSG v has exactly two successors
w′

1 and w′
2 in M with w′

1 ∈ w1/B and w′
2 ∈ w2/B. valB is an optimal value function,

so valB(v/B) = 1
2 · (valB(w1/B) + valB(w2/B)) holds. But then by construction of

valB\B we have (valB\B)(v) = 1
2 · ((valB\B)(w′

1) + (valB\B)(w′
2)) which fulfills the

optimality equations.

For the Cases d) - f) we assume that v is a max node; min nodes can be treated
symmetrically.

Case d): Let w/B be the successor of v/B in M/B, and let w1 and w2 be the succes-
sors of v in M . Analogously to Case a) we have w1/B = w2/B = w/B and valB(v/B)
= valB(w/B). By definition of valB\B we get (valB\B)(v) = (valB\B)(w1) =
(valB\B)(w2) = max{(valB\B)(w1), (valB\B)(w2)}, so the optimality equations are
satisfied.

Case e): As in Case b) let w/B be the successor of v/B in M/B and w′ ∈ w/B the
only successor of v in M . Because of valB(v/B) = valB(w/B) (which follows from the
optimality equations for valB) we have by construction (valB\B)(v) = (valB\B)(w′),
which fulfills the optimality equations.

Case f): In analogy to Case c) let w1/B and w2/B be the successors of v/B in M/B
and w′

1, w
′
2 in M with w′

1 ∈ w1/B and w′
2 ∈ w2/B the two successors of v in M .

Now valB(v/B) = min{valB(w1/B), valB(w2/B)} holds, which implies (valB\B)(v)
= min{(valB\B)(w′

1), (valB\B)(w′
2)}, fulfilling the optimality equations.

Case g): Here (valB\B)(v) obviously fulfills the optimality equations because valB is
an optimal value function and due to the definition of valB\B. �

This theorem shows the correctness of Algorithm 11. We do not know yet how to
compute the optimal value function in Line 2; this will be discussed in Section 10.3.

91

10 Stochastic Games

Algorithm 11 Computing the Optimal Value Function via the Coarsest Quotient

Require: an SSG M = (((V,E), g), a)
1: compute the coarsest bisimulation B for P
2: compute the optimal value function valB of M/B
3: val ← valB\B

Ensure: val is the optimal value function of M

The idea of the algorithm is illustrated in Figure 10.3: In the right part, the optimal
node values, i.e. the values of valB, are written next to the nodes. The function
valB\B yields the optimal nodes values which we discussed considering the SSG from
Figure 10.1.

10.3 Algorithms for Stochastic Games

Before we can investigate the efficiency of Algorithm 11 we have to take a look at
known algorithms for SSGs. The algorithms under consideration are taken from [Con];
related approaches can be found e.g. in [Fed80, FSTV91, vdW76, vdW76] and various
other sources.

First we will introduce some notation about node labellings we need for the Algorithm
in Subsection 10.3.1. Consider a labelling function val : V → [0, 1] on the node set
V of an SSG M = (((V,E), g), a) with val(sink0) = 0 and val(sink1) = 1. Such a
function is called feasible if for all i ∈ V − {sink0, sink1} the following holds:

• if i is an average node with one child j then val(i) = val(j)

• if i is an average node with two children j and k then val(i) = 1
2 (val(j)+val(k))

• if i is a max node with one child j then val(i) ≥ val(j)

• if i is a max node with two children j and k then val(i) ≥ max{val(j)+ val(k)}

• if i is a min node with one child j then val(i) ≤ val(j)

• if i is a min node with two children j and k then val(i) ≤ min{val(j) + val(k)}

Moreover, val is called stable if val is feasible and the above inequalities are strength-
ened to equalities. Clearly, if val is stable it is the unique solution of the optimality
equations and hence labels the nodes with their optimal values.

92

10.3 Algorithms for Stochastic Games

For the second algorithm which we will investigate in Subsection 10.3.2 we introduce
the idea of a switchable node. Given a pair (σ, τ) of max- and min-strategies, we
say that a max-node i with two children j and k is (σ, τ)-switchable if valσ,τ (i) <
max{valσ,τ(j), valσ,τ (k)} holds. Symmetrically, a min-node i with two children j and
k is called (σ, τ)-switchable if valσ,τ (i) > min{valσ,τ (j), valσ,τ (k)} holds. Intuitively,
this means that at a node a local improvement can be achieved if the other edge instead
of the choosen one (by the strategy σ or τ) is used. A max-strategy σ′ id obtained
from a max-strategy σ by switching a switchable max-node i with two children by
(i, j) ∈ σ′ ⇔df (i, j) /∈ σ. The intuitive meaning is to look for a local improvement
at node i by choosing a ‘better’ edge than the initially chosen one. The switching of
a min-node is defined analogously.

10.3.1 Successive Approximation

The first algorithm we will consider is the successive approximation algorithm, due
to [Sha53], here given as Algorithm 12. It is no exact algorithm but an approximation
algorithm which computes a sequence of feasible node labellings which converges
towards the optimal value function. Its main drawback, as pointed out in [Con], is
that its convergence rate can be exponentially slow in |V |.

The most operations are rather easy to implement; we will shortly dwell on the only
complex statement in Line 8. However, by definition of feasability this leads to a
simple system of linear equations which can be solved in Θ(|V |3) time by Gaussian
elimination. The until-loop between Line 9 and Line 28 takes Θ(|V |) time in every
reasonable implementation, and the same holds for the part between Line 1 and 7.
Hence the overall runtime for k iterations including Lines 1 till 8 is in Θ(|V |3+k|V |).
So the efficiency of Algorithm 11 using Algorithm 12 depends on the number of
iterations of Algorithm 12 in Line 2.

10.3.2 Policy Improvement

As indicated by its name, this algorithm iteratively tries to improve policies till it
stops with a pair of optimal policies as shown in Algorithm 13 which was proposed
in [HK66]. In contrast to the approximation Algorithm 12, this is an exact algorithm.

For this algorithm, no lower bound for the numbers of executions of the until-loop
is known. In [Con] an upper bound of 2|Vmax|−f(|Vmax|) + 2o(f(|Vmax|)) for any function
f(n) ∈ o(n) is shown.

To obtain rigorous lower bounds we concentrate on a variant of SSGs which contain
no max-nodes. In [How66] a proof for the correctness of Algorithm 14 under these
circumstances is given. Note that due to the absence of max-nodes there is exactly

93

10 Stochastic Games

Algorithm 12 Successive Approximation

1: val(sink0)← 0, val(sink1)← 1
2: for all v ∈ Vmin do
3: val(v)← 0
4: end for
5: for all v ∈ Vmax do
6: val(v)← 1
7: end for
8: determine val(v) for all average nodes v such that val is feasible while val remains

unchanged on {sink0, sink1} ∪ Vmin ∪ Vmax

9: repeat
10: val′(sink0) = 0
11: val′(sink1) = 1
12: for all i ∈ V − {sink0, sink1} do
13: if i has one child j then
14: val′(i)← val(j)
15: else
16: if i is a min node with two children j and k then
17: val′(i) = min{overlineval(j), val(k)}
18: end if
19: if i is a max node with two children j and k then
20: val′(i) = max{overlineval(j), val(k)}
21: end if
22: if i is an average node with two children j and k then
23: val′(i) = 1

2 (overlineval(j) + val(k))
24: end if
25: end if
26: end for
27: val← val′

28: until val is stable

94

10.3 Algorithms for Stochastic Games

one max-strategy, namely the empty one. This explains the criterion of switchability
in Line 3 and the stopping condition of the until-loop in Line 5. For brevity, an SSG
without max-nodes is called a min-SSG.

Algorithm 13 Hoffman-Karp Algorithm

1: choose an arbitrary pair (σ, τ) of max- and min
2: repeat
3: switch all (σ, τ)-switchable max-nodes to obtain the max-strategy σ′

4: compute a min-strategy τ ′ which is optimal with respect to σ′

5: (σ, τ)← (σ′, τ ′)
6: until valσ,τ is stable

Algorithm 14 Policy Improvement Algorithm for min-SSGs

1: choose an arbitrary min-strategy τ
2: repeat
3: switch an arbitrary (∅, τ)-switchable min-node to obtain the min-strategy τ ′

4: τ ← τ ′

5: until val∅,τ is stable

In [MC94] an exponential lower bound for the number of iterations of the Policy
Improvement Algorithm is shown. We will use the results from there to construct a
family of min-SSGs for which Algorithm 11 offers a running time advantage compared
to the immediate application of Algorithm 14.

The running time of the Policy Improvement Algorithm depends on how the node in
Line 3 is chosen. However, for almost all not-randomised implementations there are
examples with an exponential number of iterations. We will do a generic construction
for all kinds of implementations considered in [MC94]. For every implementation,
there is a family (Mn)n∈IN of min-SSGs such that Algorithm 14 performs at least
c|Vn| iterations for some constant c > 1 (implicitly, we used the notation Mn =df

(((Vn, En), gn), an)). Moreover, these families can be constructed in such a way that
|Vn| = n and |En| ∈ O(n) hold.

We now construct a family (M ′
n)n∈IN of min-SSGs as follows (canonically, we have

M ′
n =df (((V ′

n, E
′
n), g

′
n), a

′
n)):

1. (V ′
n)min =df

n⋃
i=1

(Vn)
i
min

2. (V ′
n)average =df

n⋃
i=1

(Vn)
i
average

95

10 Stochastic Games

3. (v, w) ∈ En ⇒ (vi, wi) ∈ E′
n for all w /∈ {sink0n, sink1n} and i ∈ {1 . . . n}

4. (v, sink0n) ∈ En ⇒ (vi, sink′0n) ∈ E′
n for all i ∈ {1 . . . n}

5. (v, sink1n) ∈ En ⇒ (vi, sink′1n) ∈ E′
n for all i ∈ {1 . . . n}

This means that M ′
n consists of n copies of Mn which share two common sink nodes

sink′0n and sink′1n. Clearly, the equalities |V ′
n| = n · |Vn| − 2n+2 = n2− 2n+2 hold

by construction.

The analysis’ in [MC94] can easily transferred to the family M ′
n. The crucial point

is that the associated graphs of each M ′
n consist of n strongly connected components

and the two sink nodes which have only ingoing edges. So there is no interference
between the several strongly connected components (an argument which is also used
in [MC94]) and every such strongly connected component requires an exponential
number (in the number of its nodes) of iterations. Hence the execution of the Policy
Improvement Algorithm on M ′

n takes n·cn iterations. However, there is a bisimulation
equivalence B such that M ′

n/B is isomorphic to Mn (this is obvious because of the
construction of M ′

n) so the execution of the Policy Improvement Algorithm on M ′
n

takes at most cn iterations. The computation of the coarsest bisimulation for Mn

takes O(n · log(n)) time, so in this case Algorithm 11 is preferable to the immediate
application of the Policy Improvement Algorithm.

96

Chapter 11

An Algebraic Approach

In this chapter we give an approach to bisimulations via the theory of
semirings and dioids. We give first an introduction into semirings and
study how partitions, equivalence relations and equivalence classes can
be handled in the semiring world. Finally, we define bisimulations in this
setting and show an application to a liveness control objective. Most of
the material is based on [GMS09].

11.1 Overview

Semirings have been long in use for describing graphs and relations (see e.g. [Car80]).
Also edge-weighted graphs were treated successfully in this framework using fuzzy
relations, as in [GM08a] and [Kaw06]. In [Win08] bisimulations are described in
category theory, whereas [Pou07] gives a lattice-theoretic abstraction of bisimulations.
However, no description of bisimulations and equivalences using semirings and dioids
has been done before.

The results (which not only cover the theory of bisimulations) can be applied to other
structures like path and tree algebras which can be described by semirings. Another
advantage of this approach is that the amount of higher order logic is reduced and
only a one sorted algebra is used. Therefore this formulation is better suitable for the
application of automated proof systems. This will be done in the following Chapter 12.

11 An Algebraic Approach

11.2 Semirings, Tests and Partitions

Two basic operations in relation algebra are union and composition of relations. These
two operations and their interplay is captured in an abstract way in the definition of
a semiring.

Definition 11.2.1

1. An idempotent semiring is a structure S = (M,+, 0, ·, 1) such that 0 6= 1,
(M,+, 0) and (M, ·, 1) are monoids, choice + is commutative and idempotent,
and composition · distributes through + and 0 is an annihilator with respect to
composition, i.e. a · 0 = 0 = 0 · a for all a ∈M .

2. The natural order ⊑ is given by x ⊑ y ⇔df x+ y = y.

3. An element x ∈ N of a subset N ⊆ M is called atomic in N if x 6= 0 and
∀ y ∈ N : y 6= 0 ∧ y ⊑ x ⇒ y = x.

4. A subset N ⊆ M is called atomic if every element x ∈ N is the supremum of
the atoms of N below x.

The operator + is also called the sum operator, and · the multiplication operator.

So an idempotent semiring is almost the same as a dioid (cf. Chapter 8); a semiring
lacks only the existence of arbitrary suprema.

The element 0 is +-irreducible in an idempotent semiring, i.e. x+ y = 0⇔ x = 0 = y
holds for all x, y ∈M . More general, we also have

∑
x∈N

x = 0 ⇔ ∀x ∈ N : x = 0.

Another type of dioid we did not consider in Chapter 8 is given for example by
(Rel(M),∪, ∅, ;, idM) where M is an arbitrary set and Rel(M) denotes the set of all
relations over M . Union of relation corresponds to semiring addition, and composition
to multiplication. An element is atomic in Rel(M) iff it is a relation consisting of
exactly one element. So every relation over M is atomic in (Rel(M),∪, ∅, ;, idM)
because is can be written as the union of singleton relations. Of course, elements
from this dioid will rarely serve as edge labels.

As a running example for this Chapter we use a simple non-deterministic unlabelled
transition system whose state is described by a variable which can have values from the
interval [0, 9] (so it can be viewed as an element of the semiring (Rel([0, 9]),∪, ∅, ;, id[0,9]),
to which we will also refer in some examples). Its transition relation is given by the
following relation T which describes the relation between an input state x and an
output state y:

98

11.2 Semirings, Tests and Partitions

xTy ⇔df (x ∈ [0, 2]∧ y = x+ 4) ∨ (x ∈ [4, 6]∧ y = x+ 3) ∨ (x ∈ [4, 6]∧ y = x− 4).

So semiring in the sense of Definition 11.2.1 can serve as an abstract description of
union and composition of relations over a fixed set. However, in this version we are
not yet in the situation to reason about subsets of the carrier set of relations or states
of a transition system. To resolve this problem in [MB85] the concept of tests was
introduced.

Definition 11.2.2 Let S = (M,+, 0, ·, 1) be an idempotent semiring. The set of
tests of S, denoted by test(S), is the maximal Boolean subalgebra of S of elements
below 1 with + as join and · as meet. We denote the complement of a test p by ¬p;
so ¬p is the unique element fulfilling p + ¬p = 1 and p · ¬p = 0. The set of atomic
test of S, i.e. the set of atomic elements of test(S), is denoted by atest(S).

Usually, test are denoted by p, q, r, . . . and primed and indexed variations of them. In
every idempotent semiring the elements 0 and 1 are tests. On test(S) multiplication
and infimum coincide, so we have p ≤ q ⇔ p ·q = p for all tests p and q. In particular,
multiplication is commutative on test(S).

In our example (Rel([0, 9]),∪, ∅, ;, id[0,9]) the tests are exactly all subrelations of id[0,9],
in particular ∅ and id[0,9] are tests (they correspond to 0 and 1, respectively). More-
over, each subrelation of id[0, 9] can be identified in a canonical way with a subset of
[0, 9] and vice versa. So they can be used to model subsets without introducing a new
sort. The set of tests is in this case atomic, and the atoms of test(S) are here given
by atest(S) = {{(x, x)} |x ∈ [0, 9]}.

From now on we assume in this chapter that the set test(S) is atomic for every
semiring S under consideration. The atomic tests in semirings representing relations
or transition systems atomic tests correspond to single elements or nodes of a graph.

In this chapter we will often consider the supremum of all elements contained in
a subset of test(S). To avoid notational overflow we introduce the abbreviation∑

P =df

∑
p∈P p for finite P ⊆ test(S) (cf. the notation of the supremum in

Definition 8.1.1). So, if the semiring under consideration is also a dioid the meaning
of

∑
remains the same.

We note a simple fact which follows from the +-irreducibility of 0 by contraposition:

Lemma 11.2.1 Let S = (M,+, 0, ·, 1) be an idempotent semiring and P ⊆ M an
arbitrary subset. Then

∑
P 6= 0 ⇔ ∃ p ∈ P : p 6= 0 holds.

99

11 An Algebraic Approach

11.3 Partitions

In this section we will define the concept of a partition in the setting of semirings
and investigate it in this framework. Remember the definition of a partition (cf.
Chapter 2) and the fact that union corresponds to the supremum and multiplication
on test(S) to the infimum, i.e. intersection. Moreover, 0 models the empty set and 1
the carrier set, so the following definition is motivated:

Definition 11.3.1 A finite subset P ⊆ test(S) is called a partition if
∑

P = 1 and
for all p, q ∈ P the equivalence p · q = 0⇔ p 6= q holds.

Now the term partition is overloaded, once in the sense of Definition 11.3.1 and once
in the sense of partition of a set. To distinguish between them we will use the term
partition in the sense of Definition 11.3.1 and use set partition if we mean the partition
of a set.

So in every semiring the set {1} forms a partition, and, because we assume that in
every semiring S under consideration the set of tests is atomic, the set of atomic tests
atest(S) is also a partition. Clearly, a partition contains only tests different from 0
unless 0 = 1 holds.

If a set can be written as the union of sets from a fixed set partition then the choice of
these sets is unique. An analogous property about partitions is given by next lemma:

Lemma 11.3.1 Let P be a partition and P ′, P ′′ ⊆ P subsets of it. Then the equiva-
lence

∑
P ′ =

∑
P ′′ ⇔ P ′ = P ′′ holds.

Proof: The direction ‘⇐’ is obvious. So assume for the sake of contradiction that
there are two different subsets P ′, P ′′ ⊆ P with

∑
P ′ =

∑
P ′′. W.l.o.g there is a

p ∈ P ′ with p /∈ P ′′ and p 6= 0. First we calculate:

p ·
∑

P ′ =
{ choice of p }

p ·
∑

({p} ∪ (P ′ − {p}) =
{ splitting of

∑
}

p · (
∑
{p}+

∑
(P ′ − {p})) =

{ distributivity }
p ·

∑
{p}+ p ·

∑
(P ′ − {p}) =

{ supremum of singleton set }
p · p+ p ·

∑
(P ′ − {p}) =

{ distributivity, idempotency of · on test(S) }
p+

∑
p′∈(P ′−{p})

(p · p′) =

100

11.3 Partitions

{ partition properties }
p+

∑
p′∈(P ′−{p})

0 =

{ obvious }
p

On the other hand we have the following:

p ·
∑

P ′′ =
{ distributivity }∑

p′′∈P ′′

(p · p′′) =

{ ∀p′′ ∈ P ′′ : p 6= p′′, partition properties }∑
p′′∈P ′′

0 =

{ obvious }
0

This means that p·
∑

P ′ 6= p·
∑

P ′′, which contradicts the assumption
∑

P ′ =
∑

P ′′.
�

The following lemma gives an easy but often used connection between subsets of a
partition and their complements:

Lemma 11.3.2 Let P ′ ⊆ P be a subset of a partition P . Then the equality ¬
∑

P ′ =∑
(P − P ′) holds. In particular, for p ∈ P we have ¬p =

∑
(P − {p}).

Proof: We have
∑

(P − P ′) +
∑

P ′ =
∑

((P − P ′) ∪ P ′) =
∑

P = 1 due to the
properties of the supremum and the the fact that P is a partition. On the other hand
we have

∑
(P −P ′) ·

∑
P =

∑
p∈(P−P ′),p′∈P ′

(p ·p′). Because all p and p′ in the products

of the sum are different all these products become 0, and so does the whole sum. This
shows that

∑
(P −P ′) fulfills the properties for being the complement of ¬

∑
P ′. The

second claim is simply a special case of the first one for singleton sets. �

Partitions in our running example are (among many others) e.g. {id[0,6], id]6,9]} and
{id[0,9]∩Q, id[0,9]−Q}.

The refinement of partitions plays an important role. For instance, algorithms for
computing the coarsest bisimulation work by successive refinement of an initial par-
tition. This term is captured in the next definition:

Definition 11.3.2 We say that partition Q refines partition P , denoted by Q ≤r P ,
if every element of P can be written as the sum of suitable elements of Q. When
Q ≤r P we say also that P is coarser than Q. Clearly, ≤r is an order on the set of
partitions of a fixed semiring.

101

11 An Algebraic Approach

Note that the subset Q′ ⊆ Q with
∑

Q′ = p for any p is unique due to Lemma 11.3.1.

In the context of set partitions one might expect a slightly different definition of
partition refinement. Given two set partitions V = {Vi | i ∈ I} and V ′ = {V ′

j | j ∈ J}
of a set V a natural definition would be that V refines V ′ if for every Vi ∈ V there is
a V ′

j ∈ V
′ with the property Vi ⊆ V ′

j . However, if we translate this definition into the
language of semirings it turns out that this equivalent to Definition 11.3.2:

Lemma 11.3.3 Let P and Q be two partitions. Then Q refines P iff for every q ∈ Q
there is a p ∈ P with q ≤ p.

Proof: We show this equivalence using some subsequent Lemmas (note that these
Lemmas use only Definition 11.3.2. We decided to prove Lemma 11.3.3 before to
clarify the nearby relation to the other possible definition).

⇒: Let P and Q be partitions with Q ≤r P , and pick an arbitrary q ∈ Q. Due to
0 6= q = q · 1 = q ·

∑
P =

∑
p∈P

q · p there has to be a p ∈ P with q · p 6= 0. But for

such a p we have q ≤ p because of Lemma 11.3.4.

⇐: Consider two partitions P and Q such that for every q ∈ Q there is a p ∈ P with
q ≤ p, and fix arbitrary q ∈ Q and p ∈ P with q ≤ p. First, this implies q ·p = q (note
that on tests multiplication and infimum coincide), and hence q · p 6= 0, since q has to
be different from 0. Second, assume that there is a p′ ∈ P with p′ 6= p and q · p′ 6= 0.
Then we have both q = q · p and q = q · p′. Combining these two equations yields q =
q · p · p′, and because of p · p′ = 0 we have q = 0, which contradicts the definition of
a partition. So for every q ∈ Q there is a unique p ∈ P with q · p 6= 0, and the claim
holds according to Lemma 11.3.5. �

When dealing with partitions of sets and their refinement an obvious observation is
that if a set of the finer partition has a nonempty intersection with a set of the coarser
partition it has to be fully contained in this set. This property is stated in the next
lemma in our semiring setting:

Lemma 11.3.4 Let P and Q be partitions with Q ≤r P . Then for all q ∈ Q and
p ∈ P the implication q · p 6= 0 ⇒ q ≤ p holds.

Proof: Because of Q ≤r P there is a subset Q′ ⊆ Q with p =
∑

Q′. Due to
distributivity we have q · p = q ·

∑
Q′ =

∑
q′∈Q′

q · q′. Now 0 is +-irreducible, so there

has to be a q′ ∈ Q′ with q · q′ 6= 0. Since Q is a partition therefrom q = q′ follows and
hence q · q′ = q and eventually q ≤ p. �

The next lemma reflects the fact that every set of a partition of a set is contained in
exactly one set of a coarser partition.

102

11.3 Partitions

Lemma 11.3.5 A partition Q refines a partition P iff for all q ∈ Q there is a unique
p ∈ P with q · p 6= 0.

Proof: ‘⇒’: First we show that for every q ∈ Q there is a p ∈ P with q · p 6= 0. So
consider the equation chain q = q · 1 = q · (

∑
P) =

∑
p∈P (q · p). Because of q 6= 0

and +-irreducibility of 0 there has to be a p ∈ P with q · p 6= 0.
Assume now that there are two different p, p′ ∈ P with q · p 6= 0 and q · p′ 6= 0. Then
Lemma 11.3.4 yields both q ≤ p and q ≤ p′. So we have 0 6= q = q · q ≤ p · p′, which
contradicts p 6= p′ (in this case p · p′ = 0 had to hold). Hence p is unique.
‘⇐’: Consider an arbitrary p ∈ P and chose a subset Q′ ⊆ Q, defined by Q′ = {q ∈
Q | q ·p 6= 0}. We will show that p =

∑
Q′ holds. First we consider the equation chain

p = (
∑

Q) · p = (
∑

Q′+
∑

(Q−Q′)) · p = (
∑

Q′) · p. Because on tests multiplication
and infimum coincide this implies p ≤

∑
Q′.

The reverse inequality
∑

Q′ ≤ p is equivalent to ∀ q ∈ Q′ : q ≤ p. Assume now that
there is a q ∈ Q′ with the property q 6≤ p. By Lemma 11.3.2 this implies 0 6= q · ¬p
= q ·

∑
(P − {p}) =

∑
p′∈P−{p} q · p

′. Because 0 is +-irreducible there has to be a

p′ ∈ P − {p} such that q · p′ 6= 0. But this is a contradiction to the assumption that
p is unique with the property q · p 6= 0. �

Lemma 11.3.6 Let P and Q be partitions with Q ≤r P and assume p ∈ P and
p =

∑
Q′ for some Q′ ⊆ Q. Then for all q ∈ Q we have p · q 6= 0 ⇔ q ∈ Q′.

Proof: ‘⇒’: Because of q · p = q ·
∑

q′∈Q′ q′ =
∑

q′∈Q′(q · q′) 6= 0 there has to be a
q′ ∈ Q′ with q · q′ 6= 0. From the definition of a partition it follows that q = q′ and
hence q ∈ Q′ hold.
‘⇐’: Fix an arbitrary q ∈ Q′. Then we have q ≤ p and therefore p · q = q. Because Q
is a partition we have q 6= 0, and the claim is shown. �

A basic fact is that an equivalence relation relates only elements from the same equiv-
alence class. On the other hand, the equivalence classes form a partition of the carrier
set of an equivalence relation. This behaviour is captured in the semiring setting by
the following definition:

Definition 11.3.3 An element r ∈M respects a partition P if r =
∑

p∈P p · r · p.

Intuitively, a relation which respects a set partition can not relate elements from
different sets of the partition. This follows already from the previous definition:

Lemma 11.3.7 Let r ∈M respect the partition P and let p, p′ ∈ P such that p 6= p′.
Then p · r · p′ = 0.

103

11 An Algebraic Approach

Proof: For arbitrary p′′ ∈ P we know from the definition of a partition that p ·p′′ = 0
or p′ · p′′ = 0 holds. So we can calculate:

p · r · p′ =
{ r respects P }

p · (
∑

p′′∈P

p′′ · r · p′′) · p′ =

{ distributivity }∑
p′′∈P

p · p′′ · r · p′′ · p′ =

{ above remark }∑
p′′∈P

0 =

{ trivial }
0,

and we are done. �

The next corollary is an easy consequence:

Corollary 11.3.1 Let r ∈M respect the partition P . Then for all p ∈ P the equali-
ties p · r · ¬p = 0 = ¬p · r · p hold.

Proof: We show that in every semiring as in Definition 11.2.1 for every test the
inequality p 6= ¬p holds. Assume a test p with p = ¬p. On the one hand we have
p+ ¬p = 1. By assumption this leads to p+ p = 1 which implies p = 1. In the other
hand, from p ·¬p = 0 follows p ·p = 0 and therefrom p = 0. But this is a contradiction
to 0 6= 1 in Definition 11.2.1.
Now we can apply Lemma 11.3.7, because p 6= ¬p holds and {p,¬p} forms a partition.
�

If a relation respects a set partition it also respects every coarser set partition. This
important fact is stated in the following theorem:

Theorem 11.3.1 Let partition Q refine partition P . If r ∈ M respects Q then it
respects P , too.

Proof: For arbitrary p ∈ P we introduce the abbreviation Qp ⊆ Q for the unique
(cf. Lemma 11.3.1) subset of Q with the property

∑
Qp = p.

First we show that
⋃

p∈P

Qp = Q holds. Trivially we have
⋃

p∈P

Qp ⊆ Q, so assume there

is a q with q ∈ Q and q /∈
⋃

p∈P

Qp. By construction,
⋃

p∈P

Qp is a partition, and we can

reason as follows:

¬q =

104

11.4 Modality and Symmetry

{ Lemma 11.3.2 }∑
q′∈Q,q′ 6=q

q′ ≥

{ q /∈
⋃

p∈P

Qp,
⋃

p∈P

Qp ⊆ Q }
∑

q′∈Q,q′ 6=q

q′ =

{
⋃

p∈P

Qp is partition }

1

This means ¬q ≥ 1, which implies q ≤ 0 and finally q = 0, which contradicts the fact
that Q is a partition.
After this preliminary deliberation we can now calculate:

∑
p∈P

p · r · p =

{ Construction of Qp }∑
p∈P

((
∑

Qp) · r · (
∑

Qp) =

{ Distributivity }∑
p∈P (

∑
q,q′∈Qp

(q · r · q′)) =

{ splitting of
∑
}∑

p∈P ((
∑

q∈Qp
q · r · q) + (

∑
q,q′∈Qp,q 6=q′ q · r · q

′)) =

{ Lemma 11.3.7 }∑
p∈P (

∑
q∈Qp

q · r · q) =

{
⋃

p∈P

Qp = Q }
∑

q∈Q q · r · q =
{ r respects Q }

r,

and the proof is finished. �

11.4 Modality and Symmetry

In the previous section we showed how partitions can be handled in the abstract set-
ting of semirings. However, we did not reason about equivalence relations. The reason
is that the operations we have at our disposal till now can model only composition,
union and restriction of relations. To reason about equivalence relations we need a
concept how we can model also the converse of a relation and characterise symmetry
of relations. As a first step we introduce modal operators which enable us to reason
about image and preimage of relations.

105

11 An Algebraic Approach

Definition 11.4.1 A modal (idempotent) semiring (see e.g. [DMS06]) is a structure
(M,+, 0, ·, 1, |·〉, 〈·|) where (M,+, 0, ·, 1) is an idempotent semiring and the forward
and backward diamond operators |·〉, 〈·| : M → (test(S) → test(S)) are axiomatised
as follows for all x, y ∈M and p, q ∈ test(S):

1. |x〉q ≤ ¬p ⇔ p · x · q ≤ 0 ⇔ 〈x|p ≤ ¬q

2. |x〉(|y〉q) = |x · y〉q and 〈x|(〈y|q) = 〈y · x|q

In the concrete semiring of relations over a fixed set, the backward diamond 〈x|q and
the forward diamond |x〉q correspond to the image and preimage, resp. of the subset
characterised by q under the relation x. So in our example we have |T 〉id[7,8] = id[4,5]
and 〈T |id[5,6[= id[1,2[∪ id[8,9[.

The following lemma lists some properties of the diamond operators without proof
(the proofs can be found e.g. in [DMS06] or [DMS11]):

Lemma 11.4.1 Let x, y ∈ M and p, q ∈ test(S) be arbitrary. Then the following
hold:

1. |p〉q = p · q = 〈p|q.

2. |x〉0 = 0 = 〈x|0.

3. |0〉p = 0 = 〈0|p.

4. |x+ y〉p = |x〉p+ |y〉p.

5. |x〉(p+ q) = |x〉p+ |x〉q.

6. x ≤ y ∧ p ≤ q ⇒ |x〉p ≤ |y〉q.

All the properties of the forward diamond given here hold also for the backward
diamond in a symmetric way.

The box operators are defined via de Morgan duality by |x]p = ¬|x〉¬p and 〈x|p =
¬〈x|¬p. In the relational setting, the forward box |R]N corresponds to the set of
elements from which every R-step leads inevitably into N . Note that nodes without
successors belong automatically to |R]N .

Diamond and Box form a Galois connection and enjoy the following properties (see [DMS11]):

Lemma 11.4.2 Let a be arbitrary and consider an arbitrary test p. Then the follow-
ing inequalities and equivalences hold:

106

11.4 Modality and Symmetry

1. |a〉〈a|p ≤ p ≤ 〈a||a〉p,

2. 〈a||a]p ≤ p ≤ |a]〈a|p,

3. 〈a|p ≤ p⇔ p ≤ |a]p and |a〉p ≤ p⇔ p ≤ 〈a|p.

In a dioid the equations 4 and 5 from Lemma 11.4.1 can be strengthened from suprema
of binary sets to suprema of arbitrary sets, i.e. in a dioid |

∑
x∈N

x〉p =
∑
x∈N

|x〉p and

|x〉
∑
p∈P

p =
∑
p∈P

|x〉p hold for all subsets N ⊆M and P ⊆ test(S).

As a consequence of Part 1 of Definition 11.4.1 we have p · |x〉q ≤ 0 ⇔ p ·x · q ≤ 0 ⇔
q · 〈x|p ≤ 0. This implies the following lemma:

Lemma 11.4.3 Let p be an atomic test. Then for all x ∈ M and all tests q the
equivalence p · x · q 6= 0 ⇔ p ≤ |x〉q holds.

Proof: By contraposition of the above equivalence, we get p ·x ·q 6= 0 ⇔ p · |x〉q 6= 0.
Because of |x〉q ≤ 1 we have p · |x〉q ≤ p, and since p is atomic this is equivalent to
p · |x〉q = p. But this is the case iff p ≤ |x〉q holds. �

The symmetric property holds for the backward diamond, i.e. for an atomic test p and
arbitrary x ∈M and q ∈ test(S) we have the equivalence q · x · p 6= 0 ⇔ p · 〈x|q 6= 0.

Often, we do not want to compare single tests but also functions on test. Therefore
we overload the ≤-sign:

Definition 11.4.2 Let f : test(S) → test(S) and g : test(S) → test(S) be functions
on test(S). Then we define the order pointwise by

f ≤ g ⇔df ∀p ∈ test(S) : f(p) ≤ g(p)

In an analogous way f = g is defined.

So 〈x| ≤ 〈y| stands for ∀p ∈ test(S) : 〈x|p ≤ 〈y|p and 〈x| = 〈y| for ∀p ∈ test(S) :
〈x|p = 〈y|p. Clearly, the above defined relation is an order and hence reflexive,
transitive and antisymmetric.

The symmetry of a relation R is expressed via R◦ ⊆ R or the equivalent formulation
R◦ = R. A pure semiring as given in Definition 11.2.1 offers no possibility to model
symmetry since it lacks the concept of a converse operation. So we have to look for
a different way to handle symmetry.

Let us for an intermediate step assume that in a semiring there is for every x ∈ M
a virtual converse x◦. Then this operation should certainly fulfill the equivalence

107

11 An Algebraic Approach

p ·x◦ · q = 0 ⇔ q · x · p = 0 for all p, q ∈ test(S). By Part 1 of Definition 11.4.1 this is
equivalent to |x◦〉 = 〈x| and 〈x◦| = |x〉. This means we can avoid the explicit definition
of a converse operation by considering the behaviour of the forward and backward
diamond of an element on all tests. This idea gives rise to the next definition:

Definition 11.4.3 An element x of a modal semiring is called symmetric if 〈x| = |x〉.

From Part 4 of Lemma 11.4.1 it follows immediately that in a dioid the supremum
of arbitrary symmetric elements is also symmetric. In particular, this holds also for
finite sums in semirings.

Our example relation is not symmetric in the sense of Definition 11.4.3, because we
have |T 〉{(5, 5)} = {(1, 1)}, but 〈T |{(5, 5)} = {(1, 1), (8, 8)}. However, the restricted
relation T ′ = T ; (id[0,2] ∪ id[4,6]) is symmetric in this sense, as can be easily verified.

Next we consider a certain class of semirings which contain a greatest element ⊤
with x ≤ ⊤ for all x ∈ M . In the semiring of relations over a fixed set the greatest
element is the universal relation over this set. Also, this semiring fulfills the following
definition:

Definition 11.4.4 Let S = (M,+, 0, ·, 1, |·〉, 〈·|) be a modal semiring with greatest
element ⊤. We say that S satisfies the Tarski rule if x 6= 0⇔ ⊤ · x · ⊤ = ⊤ holds for
all x ∈M .

The Tarski rule has also an equivalent formulation:

Lemma 11.4.4 Let S = (M,+, 0, ·, 1, |·〉, 〈·|) be a modal semiring with greatest ele-
ment ⊤. S satisfies the Tarski rule iff ⊤ · x · ⊤ = ⊤ · y · ⊤ ⇔ (x = 0 ⇔ y = 0) ⇔
(x ≤ 0⇔ y ≤ 0) holds for all x, y ∈M .

Proof: Clearly, the Tarski rule follows from the condition of Lemma 11.4.4 if we
choose x arbitrarily and set y = 1.
So assume now first x = 0 ∧ y = 0. This implies ⊤ · x · ⊤ = 0 = ⊤ · y · ⊤. Also,
x 6= 0 ∧ y 6= 0 implies ⊤ · x · ⊤ = ⊤ = ⊤ · y · ⊤ in presence of the Tarski rule. This
shows ⊤·x ·⊤ = ⊤·y ·⊤ ⇐ (x = 0⇔ y = 0). For the other direction assume ⊤·x ·⊤
= ⊤ · y ·⊤ and x = 0. This implies ⊤ ·x ·⊤ = 0 = ⊤ · y ·⊤, so according to the Tarski
rule y = 0 holds, too. Because the claim is symmetric in x and y the first equivalence
is shown.

The second equivalence follows from the fact that 0 is the least element. �

The next lemma gives some useful consequences of the Tarski rule:

Lemma 11.4.5 Let S = (M,+, 0, ·, 1, |·〉, 〈·|) be a modal semiring satisfying the Tarski
rule. Then the following holds for all x, y ∈M :

108

11.4 Modality and Symmetry

1. ⊤ · x · ⊤ · y · ⊤ = 0 ⇔ (x ≤ 0 ∨ y ≤ 0)

2. ⊤ · x · ⊤ · y · ⊤ = 0 ⇔ ⊤ · y · ⊤ · x · ⊤ = 0

3. ⊤ · x · ⊤ · y · ⊤ = ⊤ · y · ⊤ · x · ⊤

Proof: 1: If x ≤ 0 ∨ y ≤ 0 we have clearly ⊤ · x · ⊤ · y · ⊤ = 0 due to the annihilator
properties of 0. Conversely, if x 6= 0 ∧ y 6= 0 we have ⊤ · x · ⊤ · y · ⊤ = ⊤ · y · ⊤ =
⊤ 6= 0.
2: This is a simple consequence of Part 1.
3: This follows from Part 2 and the Tarski rule since the only possible values of both
⊤ · x · ⊤ · y · ⊤ and ⊤ · y · ⊤ · x · ⊤ are 0 and ⊤. �

From now till the end of this section we assume that every semiring under consid-
eration fulfills the Tarski rule. In this case we can give equivalent formulations of
symmetry:

Lemma 11.4.6 The following statements are equivalent for arbitrary x ∈M :

1. ∀ p, q ∈ test(S) : ⊤ · p · x · q · ⊤ = ⊤ · q · x · p · ⊤.

2. ∀ p, q ∈ test(S) : p · x · q ≤ 0⇔ q · x · p ≤ 0.

3. x is symmetric.

Proof: The equivalence of parts 1 and 2 is a simple consequence of Lemma 11.4.4.
To show the equivalence of parts 2 and 3 we argue for arbitrary x ∈M as follows:

(∀p, q ∈ test(S) : p · x · q ≤ 0⇔ q · x · p ≤ 0) ⇔
{ Part 1 of Definition 11.4.1 }

(∀p, q ∈ test(S) : |x〉q ≤ ¬p⇔ 〈x|q ≤ ¬p) ⇔
{ substitution p 7→ ¬p, bijectivity of negation }

(∀p, q ∈ test(S) : |x〉q ≤ p⇔ 〈x|q ≤ p) ⇔
{ indirect equality }

∀q ∈ test(S) : |x〉q = 〈x|q ⇔
{ Definition 11.4.3 }

x is symmetric. �

This lemma implies the following one:

Lemma 11.4.7 Let s be an arbitrary symmetric element s ∈M and p be an arbitrary
test. Then p · s · p is also symmetric.

109

11 An Algebraic Approach

Proof: Assume arbitrary q, q′ ∈ test(S). Then we can calculate:

⊤ · q · (p · s · p) · q′ · ⊤ =
{ associativity of · }

⊤ · (q · p) · s · (p · q′) · ⊤ =
{ symmetry of s, Part 1 of Lemma 11.4.6 }

⊤ · (p · q′) · s · (p · q) · ⊤ =
{ commutativity of · on test(S) }

⊤ · (q′ · p) · s · (p · q) · ⊤ =
{ associativity of · }

⊤ · q′ · (p · s · p) · q · ⊤

This shows the claim due to Part 1 of Lemma 11.4.6. �

An immediate consequence is the following corollary:

Corollary 11.4.1 For every p ∈ test(S) the product p · ⊤ · p is symmetric; in partic-
ular, ⊤ is symmetric.

Proof: Part 3 of Lemma 11.4.5 and Part 11.4.6 of Lemma 11.4.6 yield the symmetry
of ⊤. Then p · ⊤ · p is symmetric due to Lemma 11.4.7. �

Remark: In [Möl13] the concept of m-symmetry is introduced. In our terms, an
element a is called m-symmetric if 〈a| ≤ |a〉 holds. Then it is shown that for every
m-symmetric element a and every test p the element p · a · p is m-symmetric, too. We
will show that the terms m-symmetric from [Möl13] and symmetric are equivalent.

Clearly, symmetry implies m-symmetry due to reflexivity of ≤. Moreover, due to
antisymmetry of ≤, it suffices to show that 〈a| ≤ |a〉 implies |a〉 ≤ 〈a|. So we fix an
arbitrary test p and reason as follows:

〈a|p ≤ |a〉p⇒
{ Part 3 of Lemma 11.4.2 }

p ≤ |a]|a〉p⇒
{ antitony of negation }

¬|a]|a〉p ≤ ¬p⇒
{ definition of forward box }

|a〉¬|a〉p ≤ ¬p⇒
{ definition of forward box }

|a〉|a]¬p ≤ ¬p

Because negation is a bijection on test(S) the last inequality implies |a〉|a]q ≤ q for
every q ∈ test(S) and hence (|a〉|a])〈a|p ≤ 〈a|p (note that 〈a|p ∈ test(S) holds). By
associativity of function composition we obtain |a〉(|a]〈a|p) ≤ 〈a|p, and Part 2 of

110

11.5 Equivalences

Lemma 11.4.2 yields |a〉p ≤ 〈a|p due to isotony of diamond in the second argument
(see Part 6 of Lemma 11.4.1). �

The last lemma in this subsection concerns the interplay between the greatest element
and the diamond operators:

Lemma 11.4.8 For arbitrary p ∈ test(S) with p 6= 0 we have |⊤〉p = 1 = 〈⊤|p. In
particular, |⊤〉1 = 1 = 〈⊤|1 holds.

Proof: We only show |⊤〉1 = 1 and |⊤〉p = 1; the equalities for the backward
diamond are shown symmetrically. First we have |⊤〉1 ≥ |1〉1 due to isotony of the
forward diamond. According to Part 1 of Lemma 11.4.1 we have |1〉1 = 1. Since 1 is
the greatest element in test(S) this implies |⊤〉1 = 1.
For the second equality we calculate:

|⊤〉p =
{ p = p · 1, Part 1 of Lemma 11.4.1 }

|⊤〉|p〉1 =
{ |⊤〉1 = 1 }

|⊤〉|p〉|⊤〉1 =
{ Part 2 of Definition 11.4.1 }

|⊤ · p · ⊤〉1 =
{ Tarski rule, p 6= 0 }

|⊤〉1
{ |⊤〉1 = 1 }

1,

and the proof is finished. �

11.5 Equivalences

11.5.1 Equivalences and Fixpoints

Equivalence relation are reflexive, transitive and symmetric relations. In the last
section we defined symmetry in the semiring framework, so the next step is to attack
transitivity and reflexivity.

Reflexivity of a relation R ⊆ X×X can be characterised by idX ⊆ R, and transitivity
by R;R ⊆ R. Since the identity corresponds to 1 and composition to multiplication
in semirings, these characterisations can be translated as follows:

111

11 An Algebraic Approach

Definition 11.5.1 An element x ∈ M is called reflexive if 1 ≤ x and transitive if
x · x ≤ x. A reflexive and transitive element is called a preorder and a symmetric
preorder an equivalence.

A more liberal formulation of reflexivity and transitivity of x would be |1〉 ≤ |x〉 and
|x〉|x〉 ≤ |x〉, resp., or in an equivalent way, 〈1| ≤ 〈x| and 〈x|〈x| ≤ 〈x|. Clearly,
Definition 11.5.1 implies the above conditions by isotony of the diamond operators
and Part 2 of Definition 11.4.1, so we preferred a stronger version in our work.

The two formulations are indeed not equivalent. To see this, we consider the semiring
of sets of walks in a graph with union as addition and pointwise lifted concatenation as
multiplication (this means, given two sets of walks W1 and W2 we define the product
by W1 ⊲⊳ W2 = {w1 ⊲⊳ w2 |w1 ∈W1, w2 ∈W2}). 0 in this semiring corresponds to the
empty set (as in every semiring with union as addition) and 1 to the set of all walks
of edge length 1. So the expression 1 ≤ x means that x contains all these walks. On
the other hand, |1〉p ≤ |x〉p means that x has to contain a walk from every node in p
to some other node in p, but this walk need not to be of edge length 1.

For an equivalence relation R, the image operation of R is a closure operations, i.e.,
it is idempotent (NR = (NR)R), extensive (N ⊆ NR) and isotone (N1 ⊆ N2 ⇒
N1R ⊆ N2R). The same holds also for the preimage operator. Of course, idempotency
implies that NR is a fixpoint of the function λN.NR. These properties and one of
its consequences are stated in the next lemma:

Lemma 11.5.1 Let x be a preorder.

1. |x〉 and 〈x| are closure operators.

2. If p is a test then |x〉p is a fixpoint of |x〉 and 〈x|p is a fixpoint of 〈x|.

3. The sets of fixpoints of |x〉 and 〈x| each are closed under composition · .

Proof: 1: We have to show |x〉p = |x〉|x〉p (idempotency), p ≤ |x〉p (extensitivity)
and q ≤ p⇒ |x〉q ≤ |x〉p (isotony) for all tests q and p.
Isotony holds because all diamond operations are isotone. Because x is reflexive we
have 1 ≤ x and hence together with the isotony of the diamond the extensitivity. In
order to show idempotency we calculate for an arbitrary test p as follows:

|x〉|x〉p =
{ Part 2 of Definition 11.4.1 }

|x · x〉p ≤
{ transitivity of x, isotony of diamond }

|x〉p =
{ p = 1 · p = |1〉p (Part 1 of Lemma 11.4.1) }

112

11.5 Equivalences

|x〉|1〉p ≤
{ reflexivity of x, transitivity of diamond }

|x〉|x〉p

So this shows |x〉|x〉p ≤ |x〉p ≤ |x〉|x〉p, which implies the claim. The case of the
backward diamond is treated symmetrically.

2: This follows simply from the idempotency of |x〉 and 〈x|, resp.

3: In [Bir67] it is shown in a more general setting that the two previous claims imply
this one. �

Later we will investigate the connection between fixpoints of an equivalence and equiv-
alence classes of an equivalence relation. As known, the set of equivalence classes
forms a set partition, so the complement of the union of equivalence classes can be
written itself as the union of suitable equivalence classes. This is the quintessence of
the following lemma:

Lemma 11.5.2 Let r be an equivalence and p a fixpoint of the function 〈r|. Then
¬p is a fixpoint of 〈r|, too (In the concrete setting of relations a similar result can be
found in [SS93], p. 33.). The analogous claim holds for |r〉.

Proof: Because r is reflexive and the diamonds are isotone we have the inequality
〈r|¬p ≥ ¬p. For the inverse inequality we can reason as follows:

〈r|¬p ≤ ¬p ⇔
{ Part 1 of Definition 11.4.1 }

¬p · r · p ≤ 0 ⇔
{ Part 1 of Definition 11.4.1, again }

|r〉p ≤ p ⇔
{ symmetry of r }

〈r|p ≤ p ⇔
{ assumption }

true

The claim for the forward diamond is shown analogously. �

11.5.2 Equivalences and Partitions

In the previous Subsection 11.5.1 we enlightened the properties of fixpoints of equiva-
lences. Equivalence classes are fixpoints of an equivalence relations, but not the only
ones. Their special property in contrast to other fixpoints is that they are atomic in
the lattice of all fixpoints of an equivalence relation. We will now show analogous
properties in our framework.

113

11 An Algebraic Approach

Lemma 11.5.3 Let r be an equivalence and Fr the set of all fixpoints of |r〉. Assume
that Fr is atomic and denote the set of all its atoms by Ar ⊆ Fr. Then Ar is a
partition.

Proof: First we have to show the equality
∑

Ar = 1. Because of Ar ⊆ test(S) we
have

∑
Ar ≤ 1, so let us for the sake of contradiction assume that

∑
Ar < 1. Then

¬
∑

Ar is different from zero, and due to Lemma 11.5.2 ¬
∑

Ar is also a fixpoint of
r. So there has to be an atomic fixpoint ar of r with ar ≤ ¬

∑
Ar. Due to definition

of Ar we have ar ∈ Ar and hence ar ≤
∑

Ar. This yields ar ·ar ≤ (¬
∑

Ar) · (
∑

Ar),
which implies ar = 0. But this is a contradiction to the fact that ar is atomic.
In order to show the second property of a partition chose arbitrary p, q ∈ Ar with
p 6= q. Now by Lemma 11.5.1 it follows that p · q is again a fixpoint of r, and due to
isotony of multiplication we have both p · q ≤ p and p · q ≤ q. Because p and q are
two different atomic fixpoints p · q = 0 has to hold. �

According to the introductory words of this subsection we can now make the following
definition:

Definition 11.5.2 Let r be an equivalence. Then we call the set of atomic fixpoints
of the function 〈r|, denoted by Pa(r), the equivalence classes of r. Due to symmetry
of r we can replace 〈r| by |r〉.

A set partition corresponds in an obvious way to an equivalence relation. This fact is
captured by the next definition encapsulated in a lemma:

Lemma 11.5.4 Let P be a partition. Then Eq(P) =df

∑
p∈P p · ⊤ · p is an equiva-

lence. It is called the equivalence induced by P .

Proof: First we show transitivity of Eq(P). Therefore we calculate:

(
∑
p∈P

p · ⊤ · p) · (
∑
p∈P

p · ⊤ · p) =

{ distributivity, associativity }∑
p,p′∈P

p · ⊤ · p · p′ · ⊤ · p′ =

{ ∀p, q ∈ P : p · q = 0⇔ p 6= q }∑
p∈P

p · ⊤ · p · p · ⊤ · p =

{ idempotency of multiplication on tests, associativity }∑
p∈P

p · (⊤ · p · ⊤) · p =

{ Tarski rule }∑
p∈P

p · ⊤ · p

114

11.5 Equivalences

This shows even the sharper equality (
∑
p∈P

p ·⊤ ·p) · (
∑
p∈P

p ·⊤ ·p) =
∑
p∈P

p ·⊤ ·p instead

of the sufficient inequality.

Reflexivity is shown by the following calculation:
∑
p∈P

p · ⊤ · p ≥

{ ⊤ ≥ 1, isotony of multiplication }∑
p∈P

p · 1 · p =

{ idempotency of multiplication on tests }∑
p∈P

p =

{ partition properties }
1

To show symmetry we chose an arbitrary q ∈ test(S) and calculate:

|
∑
p∈P

p · ⊤ · p〉q =

{ distributivity of summation over diamonds }∑
p∈P

|p · ⊤ · p〉q =

{ Corollary 11.4.1 }∑
p∈P

〈p · ⊤ · p|q =

{ distributivity of summation over diamonds }
〈
∑
p∈P

p · ⊤ · p|q

So we have shown |
∑
p∈P

p · ⊤ · p〉 = 〈
∑
p∈P

p · ⊤ · p|, as desired. �

An equivalence relation relates exactly the elements inside its equivalence classes.
This is expressed in the following lemma:

Lemma 11.5.5 Let r be an equivalence and p, q ∈ Pa(r) arbitrary. Then the equiv-
alence p · r · q = 0⇔ p 6= q holds.

Proof: According to Part 11.4.1 of Definition 11.4.1 the expression p · r · q = 0 is
equivalent to 〈r|p ≤ ¬q. Because p is a fixpoint of r this holds iff p ≤ ¬q. Applying
the shunting rule yields the equivalent statement p · q = 0. Now by Lemma 11.5.3 we
know that Pa(r) is a partition, so the last statement is equivalent to p 6= q. �

A similar property is stated by the next lemma:

Lemma 11.5.6 Let r be an equivalence. Then r respects Pa(r).

115

11 An Algebraic Approach

Proof: We have to show r =
∑

p∈Pa(r)

p · r · p. This is done as follows:

r =
{ r = 1 · r · 1, partition properties }

(
∑

Pa(r)) · r · (
∑

Pa(r)) =
{ distributivity }∑

p,p′∈Pa(r)

p · r · p′ =

{ splitting the sum }∑
p∈Pa(r)

p · r · p+
∑

p,p′∈Pa(r),p6=p′

p · r · p′ =

{ Lemma 11.5.5 }∑
p∈Pa(r)

p · r · p �

The next lemma is mainly of technical interest:

Lemma 11.5.7 For a partition P and arbitrary test q we have the equality |Eq(P)〉q =∑
p∈P ∧ p·q 6=0

p.

Proof: The proof is done by the following calculation:

|Eq(P)〉q =
{ definition of Eq(P) }

|
∑
p∈P

p · ⊤ · p〉q =

{ distributivity of sum over diamond }∑
p∈P

|p · ⊤ · p〉q =

{ Part 2 of Definition 11.4.1 }∑
p∈P

|p〉|⊤〉|p〉q =

{ Part 1 of Lemma 11.4.1 }∑
p∈P

|p〉|⊤〉(p · q) =

{ Part 2 of Lemma 11.4.1 }∑
p∈P ∧ p·q 6=0

|p〉|⊤〉(p · q) =

{ Lemma 11.4.8 }∑
p∈P ∧ p·q 6=0

|p〉1 =

{ p = 1 · p = |1〉p (Part 1 of Lemma 11.4.1) }∑
p∈P ∧ p·q 6=0

p �

116

11.5 Equivalences

Now we can prove the main theorem of this subsection, which connects the operations
Eq and Pa:

Theorem 11.5.1 Let r be an equivalence and P a partition. Then the following
holds:

1. r ≤ Eq(Pa(r)).

2. P = Pa(Eq(P)).

This means in particular that Pa and Eq form a Galois connection (cf. [EKMS94]).

Proof: 1: This is done by calculation:

r =
{ Lemma 11.5.6 }∑

p∈Pa(r)

p · r · p ≤

{ isotony of multiplication }∑
p∈Pa(r)

p · ⊤ · p =

{ Lemma 11.5.4 }
Eq(Pa(r))

2: Because P is a partition we know due to Lemma 11.5.7 that every p ∈ P is a fixpoint
of |Eq(P)〉. We will now show that the elements of P are even atomic fixpoints of
|Eq(P)〉. Therefore we fix an arbitrary p ∈ P and consider an arbitrary test q 6= 0
with q < p. Then we have p · q = q 6= 0 and p′ · q ≤ p′ · p = 0 for all p′ ∈ P with
p′ 6= p. So again by Lemma 11.5.7 we get |Eq(P)〉q = p 6= q, which means that q is no
fixpoint of |Eq(P)〉. By means of Definition 11.5.2 we have till now P ⊆ Pa(Eq(P)).

Now it remains to show that every atomic fixpoint of |Eq(P)〉 is also an element of
P . Therefore consider first an arbitrary fixpoint q of |Eq(P)〉. Then we have q =
|Eq(P)〉q =

∑
p∈P ∧ p·q 6=0

p due to the fixpoint property of q and Lemma 11.5.7. This

sum decomposition holds for all fixpoints of |Eq(P)〉, in particular for every atomic
fixpoint. Due to atomicity an atomic fixpoint of |Eq(P)〉 can not be written as the
sum of different atomic fixpoints of |Eq(P)〉, i.e. elements of Pa(Eq(P)). Hence the
sum

∑
p∈P ∧ p·q 6=0

p has to contain exactly one summand unequal to 0, which has to arise

in the case p = q. So q is also an element of P which implies |Eq(P)〉 ⊆ P .

The fact that Pa and Eq form a Galois connection form a Galois connection follows
from these properties together with the isotony of Pa and Eq by standard results (cf.
again [EKMS94]). �

117

11 An Algebraic Approach

If we consider the semiring of relations the inequality of Part1 is even an equality.
However, in general semiring a strict inequality can hold. Therefore consider again
the semiring of paths over the graph G = ({x}, {(x, x)}). In this semiring the element
1 = {x} is an equivalence (as in every modal semiring), and the only partition is given
by P = {1} = {{x}}. But then we have Eq(Pa(1)) = ⊤ 6= 1 because here ⊤ is the
union of all finite paths of the form xxx

11.6 Atomic Tests and Equivalence Classes

In the previous subsection we investigated the relationship between partitions and
atomic fixpoints of certain functions. Now we will see how atomic tests fit into this
framework. In the relation semiring, atomic tests correspond to singleton subsets, i.e.
to elements of the carrier set. So the next lemma can be interpreted as ‘Two elements
are connected by an equivalence relation iff they are in the same equivalence class.’

Lemma 11.6.1 Let r be an equivalence and p, q be atomic tests. Then we have the
equivalence p · r · q 6= 0⇔ |r〉p = |r〉q.

Proof: ‘⇒ ’: First we have:

p · r · q 6= 0 ⇒
{ Lemma 11.4.3 }

p ≤ |r〉q ⇒
{ isotony of the diamond }

|r〉p ≤ |r〉|r〉q ⇒
{ Part 2 of Definition 11.4.1 }

|r〉p ≤ |r · r〉q ⇒
{ transitivity of r, isotony of the diamond }

|r〉p ≤ |r〉q.

Symmetrically we can show 〈r|q ≤ 〈r|p. Because r is symmetric this is equivalent to
|r〉q ≤ |r〉p. Now the equality follows from the two inequalities.

‘⇐’: We have p = 1 ·p = |1〉p ≤ |r〉p due to Lemma 11.4.1, reflexivity of r and isotony
of the diamond. So by assumption we have p ≤ |r〉q, and the claim follows from
Lemma 11.4.3. �

An equivalence relation respects a given set partition iff the set of its equivalence
classes is a refinement of the given set partition. This property holds also in our
general setting, as stated by the following theorem:

Theorem 11.6.1 Let r be an equivalence. Then r respects a partition P iff Pa(r)
refines P .

118

11.7 Bisimulations

Proof: ‘⇒ ’: Let us assume that Pa(r) is no refinement of P . Then by Lemma 11.3.5
there is a p ∈ P and q, q′ ∈ Pa(r) with q 6= q′, p · q 6= 0 and p · q′ 6= 0. Because
we assumed that test(S) is atomic there are two atomic tests pa, p

′
a ∈ atest(S) such

that pa ≤ p · q and p′a ≤ p · q′ hold. In particular, this implies pa ≤ p and p′a ≤ p, so
the equivalence classes of pa and p′a under r equal both p Now Lemma 11.6.1 yields
pa · r · p

′
a 6= 0, and by isotony of multiplication we obtain q · r · q′ 6= 0. But now r can

not respect P due to Lemma 11.3.7.

‘⇐’: By Lemma 11.5.6 we know that r has to respect Pa(r). Then r respects also P
due to Theorem 11.3.1. �

In the concrete setting of relations equivalence classes are defined as the image (or
equivalently preimage) of single elements of an equivalence relation. Here we defined
them via atomic fixpoints. A very aesthetic result is that our definition is equivalent
to this one in the context of semirings:

Theorem 11.6.2 Let r be an equivalence and p an atomic test. Then |r〉p is an
equivalence class of r. It is called the equivalence class of p under r and is denoted
by [p]r.

Proof: To satisfy Definition 11.5.2 we have to show that |r〉p is atomic in the set of
fixpoints of |r〉. So we consider an arbitrary test q with 0 6= |r〉q ≤ |r〉p. Because of
Part 1 of Lemma 11.4.1 we can conclude that q 6= 0 holds. The set test(S) is atomic,
so there is a nonempty set Q′ ⊆ atest(S) with q =

∑
Q′. Due to distributivity

of the diamond (cf. the remark after Lemma 11.4.1) we can write the inequality
|r〉q ≤ |r〉p in the equivalent form ∀q′ ∈ Q′ : |r〉q′ ≤ |r〉p. By Part 1 of Lemma 11.4.1
we have |r〉q′ = r · q′ and reflexivity of r yields r · q′ ≤ q′, altogether this implies
∀q′ ∈ Q′ : q′ ≤ |r〉p. Now we have ∀q′ ∈ Q′ : q′ · r · p 6= 0 due to Lemma 11.4.3 and by
Lemma 11.6.1 we obtain ∀q′ ∈ Q′ : |r〉q′ = |r〉p. But this implies the desired equality
|r〉q =

∑
q′∈Q′ |r〉q′ = |r〉p. �

11.7 Bisimulations

In Section 4 we mentioned immediately after Definition 4.2.1 an alternative character-
isation of bisimulations. A relation B is a bisimulation between two set labelled graphs

G1 = ((V1, E1), g1) and G2 = ((V2, E2), g2) if B◦;
l
−→g1⊆

l
−→g2 ;B

◦ and B;
l
−→g2⊆

l
−→g1 ;B

hold for all l ∈ L. In Section 11.4 we showed how we can deal with the converse in
semirings, so we can translate this into the following definition:

Definition 11.7.1 An element b ∈M is called a bisimulation for g ∈ M if |b〉|g〉 ≤
|g〉|b〉 ∧ 〈b||g〉 ≤ |g〉〈b| holds. For an element g ∈ M the set of all bisimulations for g

119

11 An Algebraic Approach

is denoted by bisimg.

Note that by this definition 0 is a bisimulation for every g ∈ M . We will deal with
this later. Moreover, the term bisimulation from the previous definition is equivalent
to the term ‘autobisimulation’ from Section 4.

As already mentioned in Section 4 the set of bisimulations between two set labelled
graphs is closed under union and relational composition. The analogous fact in the
framework of semirings is stated in the following lemma:

Lemma 11.7.1 Let g ∈ M and b, b′ ∈ bisimg be arbitrary. Then b+ b′ ∈ bisimg and
b · b′ ∈ bisimg hold. In the case of a dioid we have even the implication B ⊆ bisimg

⇒
∑
b∈B

b ⊆ bisimg.

Proof: The claims for the sum follow directly from Part 1 of Lemma 11.4.1 and the
afterward remark. The claim for the product is a simple consequence of Part 2 of
Definition 11.4.1. �

Till now we avoided the explicit use of a converse operation via the use of the backward
and forward diamond. We will now not introduce a new operation because it turns
out that the existence of a pseudoconverse is sufficient for our purposes.

Definition 11.7.2 For an element x ∈M we call an element y ∈M a pseudoconverse
of x if |x〉 = 〈y|; in this case we use the abbreviation pscon(x, y).

Clearly, a symmetric element is a pseudoconverse of itself. From now on we re-
quire that for every element a (not necessarily unique) pseudoconverse exists. In the
concrete semiring of relations the pseudoconverse is unique and coincides with the
common converse of a relation.

Intuitively, we would expect that the relation pscon is symmetric. In this expectation
we will not be disappointed by the semirings:

Lemma 11.7.2 For arbitrary x, y ∈M we have pscon(x, y)⇔ pscon(y, x).

Proof: We show only the inequality 〈x| ≤ |y〉 (the reverse inequality can be shown
symmetrically, and the other direction of the equivalence follows by exchanging the
roles of x and y). So we pick an arbitrary p ∈ test(S) and reason as follows:

〈x|p ≤ |y〉p⇔
{ Part 1 of Definition 11.4.1 }

p · x · (¬|y〉p) ≤ 0⇔

120

11.7 Bisimulations

{ Part 1 of Definition 11.4.1 }
|x〉(¬|y〉p) ≤ ¬p⇐
{ |x〉 ≤ 〈y|, isotony of the diamond }

〈y|(¬|y〉p) ≤ ¬p⇔
{ Part 1 of Definition 11.4.1 }

(¬|y〉p) · y · p ≤ 0⇔
{ Part 1 of Definition 11.4.1 }

|y〉p ≤ |y〉p⇔
{ reflexivity of ≤ }

true �

The union of a relation with its converse is a symmetric relation. In our setting this
is expressed by the following lemma:

Lemma 11.7.3 Let x, y ∈M be arbitrary with pscon(x, y). Then x+y is symmetric.

Proof: Let x and y be as above and let p ∈ test(S) be arbitrary test. Then we can
calculate as follows:

〈x+ y|p =
{ Part 4 of Lemma 11.4.1 }

〈x|p+ 〈y|p =
{ pscon(x, y), Lemma 11.7.2 }

|y〉p+ |x〉p =
{ Part 4 of Lemma 11.4.1, commutativity of + }

|x+ y〉p

So x+ y is symmetric in the sense of Definition 11.4.3. �

Autobisimulations relate states with equivalent behaviour, so the converse of an au-
tobisimulation is also an autobisimulation. The next lemma deals with this fact:

Lemma 11.7.4 Let g, x, y ∈ M be arbitrary with x ∈ bisimg and pscon(x, y). Then
we have y ∈ bisimg.

Proof: This is an easy consequence from the definitions of bisimulation (Defini-
tion 11.7.1) and pseudoconverse (Definition 11.7.2). �

Due to Lemma 11.7.1 the set of bisimulations bisimg for arbitrary g ∈ M is in a
dioid closed under arbitrary sums. Hence we have

∑
b∈bisimg

b ∈ bisimg and, moreover,

b′ ≤
∑

b∈bisimg

b for all b′ ∈ bisimg. So we define the coarsest bisimulation for g by

121

11 An Algebraic Approach

ĝ =df

∑
b∈bisimg

b. Analogously to relations this is also here an equivalence:

Theorem 11.7.1 For every g ∈M the coarsest bisimulation ĝ for g is an equivalence.

Proof: Due to Definition 11.7.1 and the laws from Lemma 11.4.1 we have 1 ∈ bisimg,
hence 1 ≤ ĝ; so ĝ is reflexive.
To show transitivity we first observe that {b · b′ | b, b′ ∈ bisimg} ⊆ bisimg holds due to
Lemma 11.7.1. Then we can calculate:

ĝ · ĝ =
{ definition of ĝ }

(
∑

b∈bisimg

b) · (
∑

b′∈bisimg

b′) =

{ Distributivity }∑
b,b′∈bisimg

b · b′ ≤

{ {b · b′ | b, b′ ∈ bisimg} ⊆ bisimg }∑
b∈bisimg

b =

{ definition of ĝ }
ĝ

To show symmetry we use the fact that due to Lemma 11.7.4 for every b ∈ bisimg there
is a b′ ∈ bisimg with pscon(b, b′) (recall the assumption after Definition 11.7.2). So due
to idempotency of summation we have the equality

∑
b∈bisimg

b =
∑

b∈bisimg
(b + b′).

Now due to Lemma 11.7.3 the second sum contains only symmetric summands, and
is hence symmetric itself (see the remark after Definition 11.4.3). �

Since ĝ is reflexive we have 0 6= 1 ≤ ĝ, so we have always a nonempty bisimulation at
our effort.

Let us take a look at a equivalence class E of an autobisimulation B on a set labelled

graph G = ((V,E), g). If for an element e ∈ E a transition e
l
−→g f for some label

l is possible, then for every other e′ ∈ E a transition e′
l
−→g f ′ is possible where f

and f ′ are in the same equivalence class of B. Clearly, an analogous observation also
holds for subsets of equivalence classes. This stability property is the content of the
following theorem:

Theorem 11.7.2 Let g ∈ M be arbitrary and p, q ∈ atest(S) be atomic tests. If
p · g · q 6= 0 then for all p′ ≤ [p]ĝ with p′ 6= 0 we have p′ · g · [q]ĝ 6= 0.

Proof: We will first show the claim only for atomic p′. Now ĝ is an equivalence
(Theorem 11.7.1) and because of |ĝ〉p′ = [p]ĝ = |ĝ〉[p]ĝ we can apply Lemma 11.6.1

122

11.8 Application to a Simple Control Objective

and obtain p′ · ĝ · p 6= 0. By Lemma 11.4.3 this implies p′ ≤ |ĝ〉p. Analogously, we
obtain p ≤ |g〉q by Lemma 11.4.3 from the assumption p · g · q 6= 0 and atomicity of
p. Now we can calculate:

0 6=
{ assumption }

p′ ≤
{ above argumentation }

|ĝ〉p ≤
{ above argumentation, isotony of diamond }

|ĝ〉|g〉q ≤
{ ĝ ∈ bisimg, Definition 11.7.1 }

|g〉|ĝ〉q =
{ symmetry of ĝ, cf. Theorem 11.7.1 and Definition 11.5.1 }

|g〉〈ĝ|q =
{ Definition 11.5.2 }

|g〉[q]ĝ

Now, by Lemma 11.4.3 we have the desired inequality p′ · g · [q]ĝ 6= 0. �

So, Pa(ĝ) is the coarsest partition which is stable with respect to g.

11.8 Application to a Simple Control Objective

We will now sketch how the approach of quotient and expansion can be used to ensure
a simple liveness property. Semirings are a suitable model in our example, because
they represent an easily manageable description of unlabelled transition systems since
they are in principle the same as a relation R ⊆M ×M .

The property we will ensure is that every node with an ingoing edge has also an
outgoing edge. Moreover, we are looking for a maximal relation with respect to ⊆
fulfilling this property. First, we will define the above liveness property in our semiring
setting. An equivalent relational description is that if the preimage of a node set is
non-empty its image has also to be non-empty. The formulation ∀M ′ ⊆ M : RM ′ 6=
∅ ⇒ M ′R 6= ∅ in relation algebra translates in semirings into the following definition:

Definition 11.8.1 An element g ∈ M is called live if the implication |g〉p 6= 0 ⇒
〈g|p 6= 0 holds for all p ∈ test(S). An element g′ ∈ M is called a live part of an
element g if g′ is live and g′ ≤ g.

The equality |0〉p = 0 for all tests p ∈ test(S) implies that 0 is live and because of
0 ≤ x for all x ∈M we know that 0 is a live part of every element x ∈M . In the case

123

11 An Algebraic Approach

of a dioid the diamond operators distribute over arbitrary sums, so the sum of live
elements is again a live element. So, similarly to bisimulations, the set of live parts of
an element g is closed under arbitrary sum, hence for every g ∈M there is a greatest
live part (namely the sum of all its live parts), which we will denote by glpg.

The original definition of liveness of a relation R ⊆ M ×M at the beginning of this
subsection was based on single elements of the carrier set M . Few lines later we gave
an equivalent relational algebraic characterisation of liveness without looking at single
elements. This equivalence holds also in semirings (remember that nodes of a graph
correspond to atomic tests):

Lemma 11.8.1 An element g ∈ M is live iff the implication |g〉p 6= 0 ⇒ 〈g|p 6= 0
holds for every atomic test p ∈ atest(S).

Proof: The direction ‘⇒ ’ is clear since atest(S) ⊆ test(S) holds. So let p′ ∈ test(S)
be an arbitrary test. Then we can reason as follows:

|g〉p′ 6= 0⇒ 〈g|p′ 6= 0 ⇔
{ atomicity of test(S) }

|g〉
∑

p′′∈atest(S),p′′≤p′

p′′ 6= 0⇒ 〈g|
∑

p′′∈atest(S),p′′≤p′

p′′ 6= 0 ⇔

{ distributivity of diamond over sum }∑
p′′∈atest(S),p′′≤p′

|g〉p′′ 6= 0⇒
∑

p′′∈atest(S),p′′≤p′

〈g|p′′ 6= 0 ⇔

{ sum-irreducibility of 0 }
(∃p′′ ∈ {p′′ ∈ atest(S), p′′ ≤ p′} : |g〉p′′ 6= 0⇒
∃p′′ ∈ {p′′ ∈ atest(S), p′′ ≤ p′} : 〈g|p′′ 6= 0)

But now by assumption the last implication evaluates to true. �

A more technical property of the greatest live part is expressed in the following lemma:

Lemma 11.8.2 Consider an arbitrary element g and its greatest live part glpg. Then
for all atomic tests p, q ∈ atest(S) we have p · glpg · q = p · g · q ∨ p · glpg · q = 0.

Proof: Let g, p and q be as above. Because of glpg ≤ g we have p · glpg · q ≤ p · g · q.
If p · glpg · q = 0 or p · glpg · q = p · g · q hold there is nothing to show, so assume that 0
< p · glpg · q < p · g · q holds. But then the element g′ =df g + p · g · q would also be
a live part of g (this holds because of Lemma 11.8.1, Definition 11.4.1 and additivity
of the diamond operators) with glpg < g′ which contradicts the definition of glpg. �

In the sequel we will use the concept of the marker δg(p, q) of an element g ∈ M
and two tests p, q ∈ test(S) (its purpose will become clear in Definition 11.8.3). It
indicates whether g allows a transition from p to q. If so, it is a restriction of ⊤,
otherwise it becomes 0. This is the content of the next definition:

124

11.8 Application to a Simple Control Objective

Definition 11.8.2 For an element g ∈ M the marker function δg(·, ·) : test(S) ×
test(S)→M is defined by δg(p, q) = p · ⊤ · q if p · g · q 6= 0, and is 0 otherwise.

The next problem we meet is how to express the quotient g/b of an arbitrary g ∈M
and a bisimulation equivalence b ∈ bisimg in a sense analogous to Definition 6.2.1.
There the nodes of the quotient are equivalence classes of a bisimulation equivalence,
and they are connected iff there is an edge between suitable elements of them. So an
obvious idea would be to define g/b =df

∑
p,q∈Pa(b)

δg(p, q). Then we have p·(g/b)·q 6= 0

for all p, q ∈ Pa(b) iff there are atomic tests p′ ≤ p and q′ ∈ q with p · g · q 6= 0. In
the later course we will find it more convenient to use a more abstract definition via
systems of representatives:

Definition 11.8.3 Let r be an equivalence. A set Rep ⊆ atest(S) of atomic tests is
called a system of representatives (SOR) for r if

∑
p∈Rep[p]r = 1 and p, q ∈ Rep ∧ p 6=

q ⇒ [p]r · [q]r = 0 hold. For an arbitrary element g ∈ M and a bisimulation
equivalence b ∈ bisimg we call an element h ∈ M a quotient witness of g and b if
there is a SOR Rep of b with h =

∑
p,q∈Rep

p · δg([p]ĝ, [q]ĝ) · q. In this case we call Rep

the associated SOR of h and the elements (p, q) ∈ Rep2 with p · h · q 6= 0 its edges,
which we denote by edgesh. The set of all quotient witnesses of g and b is denoted by
qw(g, b).

Remark: If we use the notion Rep it will be clear from the context which equivalence
is considered. �

So a system of representatives in the semiring of relations is the same as usual. A quo-
tient witness in this case is a relation isomorphic to the quotient as in Definition 6.2.1.
The only difference is that the nodes are not equivalence classes but representatives.
Note that the edges in a quotient witness need not be edges in the original relation.
The advantage of dealing with quotient witnesses instead of the above construction∑
p,q∈Pa(b)

δg(p, q) is that we have less edges to handle.

For the modelling of the refinement operation in the sense of Definition 5.2.1 we can
use the order of the semiring, i.e. an element x refines an element y iff x ≤ y holds.
The last operation we have to handle is the expansion operation as in Definition 6.3.1.
This is done as follows:

Definition 11.8.4 Let h be a quotient witness for elements g and b, and let h′

be a refinement of h. Then the expansion h′\b of h′ by b is defined by h′\b =df∑
(p,q)∈edgesh′

[p]b · g · [q]b.

125

11 An Algebraic Approach

This corresponds in an obvious way to Definition 6.3.1. Clearly, h′\b ≤ g holds due
to [p]b ≤ 1, [q]b ≤ 1, isotony of multiplication and the supremum property of the sum.

Now we put the pieces together and show that a greatest live part can be constructed
from a greatest live part of a quotient witness:

Theorem 11.8.1 Let h be a quotient witness for elements g and b. Then glph\b =
glpg holds.

Proof: To ease the writing we set g′ =df glph\b As remarked above we have g′ ≤ g
because glph is a refinement of h.

To show liveness of g′ it suffices by Lemma 11.8.1 to show the implication |g′〉p 6= 0
⇒ 〈g′|p 6= 0 for all atomic tests p ∈ atest(S). So we consider an arbitrary atomic test
p ∈ atest(S) with the property |g′〉p 6= 0 and fix an arbitrary system of representatives
Rep for b. The equivalence class [p]b has a representative in Rep, which we will
denote by pb. By construction of g′ we have a pair (pb, p

′
b) ∈ edgesglph (which means

pb · glph · p
′
b 6= 0). Due to the definition of the quotient we have pb · [p′b]b 6= 0. Because

p and pb are both contained in the same equivalence class [p]b (formally [p]b = [pb]b)
this yields p · g · [p′b]b 6= 0 and hence p · g′ · [p′b]b 6= 0 by construction of g′. This implies
〈g′|p 6= 0, as desired, so g′ is indeed a live part of g.

Assume now that g′ < glpg holds. Then there are atomic tests p, q with p · g′ · q <
p ·glpg ·q. By construction of g′ and Lemma 11.8.2 this means p ·g′ ·q = 0 and p ·glpg ·q

= p · g · q 6= 0. Let us now consider the element ĥ =df

∑
p′,q′∈Rep

p · δglpq ([p
′]b, [q

′]b).

Clearly, ĥ ≤ h holds because of glpg ≤ g. Choose now pb, qb ∈ Rep with p ∈ [pb]b
and q[qb]b. By construction of g′, (pb, qb) /∈ edgesglph , and by the above observation,

[pb]b · glpg · qb hold. Let now p̂ ∈ Rep be arbitrary with |ĥ〉p̂ 6= 0. Then we have
|glpg〉[p̂]b 6= 0 and hence because of liveness of glpg also 〈glpg|[p̂]b 6= 0. But this means

that ĥ is a live part of h with glph < ĥ which contradicts the definition of glph. �

We will now illustrate this construction on our running example relation (see Page 99).
Its coarsest bisimulation is the equivalence [0, 2]2 ∪ [4, 6]2 ∪ (]2, 4[∪]6, 9[)2 with the
three equivalence classes [0, 2], [4, 6] and]2, 4[∪]6, 9[. A possible quotient witness is
the relation {(1, 4), (4, 8), (4, 1)} with the greatest live part {(1, 4), (4, 1)}. The above
construction yields the relation {(x, y) ∈ IR2 | (x ∈ [0, 2]∧ y = x+4)∨x ∈ [4, 6]∧ y =
x− 4}. which is indeed the greatest live part of our example relation.

126

Chapter 12

Automated Theorem Provers

In this chapter we earn the fruits of the work done in the previous chap-
ter. We show that the algebraic characterisation we developed there can
be used as input for automated theorem provers and evaluate this ap-
proach using Prover9 and Mace4. This chapter leaves the straight way
a little bit and does not only deal with the main subject of this thesis
but also with the area of automated reasoning in general.

The material from Section 11 is not only art pour l’art of mathematical beauty but
it can also open the doors for practical applications. Algebraic structures can be
implemented in automated theorem provers, and especially a formalisation in first
order logic gives hope for a useful application without to much human interaction.
For semirings and the related concept of Kleene algebra (see e.g. [Koz90] or [Koz94])
this was already investigated in work like [Höf09] and [HS07]. [HS08] gives as a
more special example a framework for automated reasoning on relations. In [Höf09] it
was shown how safety and liveness properties of hybrid systems can be verified using
Prover9 (see [McC]), one of the fastest automated theorem provers for first order logic.

Of course, the aim of deployment of automated theorem provers is not to execute an
algorithm. The idea is rather to decide whether a certain property is compatible with
our approach. Therefore we will develop a framework in first order logic which allows
us to reason about bisimulations and related topics.

As automated proof system we decided to use Prover9. This decision is due to the huge
amount of preliminary work done for example in [Höf09]. There a lot of theorems

12 Automated Theorem Provers

were already proved; we will reprove some of them here because we use a slightly
different setting.

12.1 Formalisation in Prover9/Mace4

Prover9 (see [McC]) was developed by W.W. McCune who passed away in 2011. It
is an automated prover for first order logic, coupled with Mace4, a searcher for finite
models and counterexamples. Its predecessor Otter won a section of the prestigious
CADE ATP System Competition (see [CASa] and [CASb]).

The files produced during the experiments with Prover9 and Mace4 can be found
at [Glüa] (in English) and [Glüb] (in German). As exact description of the structure
is given in Appendix A.

We will illustrate the syntax of Prover9 and Mace4 on the definitions from Section 11
and develop simultaneously a framework for our purposes.

The input files for both Prover9 and Mace4 have the same syntax. Typically, a file
starts with the definition of the used operators and is followed by some technical
instructions such as the maximal running time. The next two parts list the axioms
(assumptions) and the goal to be proved. Line comments can be produced by the
sign %. We omit the details and concentrate on the essentials.

Figure 12.1 gives the basic part of a formalisation in Prover9 of an idempotent semiring
with tests, cf. Definition 11.2.1 and Definition 11.2.2. First, the addition and multi-
plication operators are introduced, together with their precedence. Every statement
(formula, assumption) has to be ended with a full stop. Note that smaller numbers
denote higher precedence, so here multiplication binds stronger than addition.

The first block of assumptions states that addition is a commutative and associative
binary operation with neutral element 0. Variables starting with u, v, w, x, y or z

are by default universally quantified, so the first line of this block corresponds to
∀ x,y:x+y=y+x. In contrast, variables starting with other letters are by default under
the reign of an existential quantifier. So after introducing some other laws concerning
addition, multiplication and order, in the definition of tests the universal quantifiers
are indispensable. Here the function symbol c denotes the complement of a test. In
order to make it a total function we have to assign also to every non-test a function
value which can be chosen arbitrarily.

After the assumptions one can in the goal block state the claims which should be
proved. It is possible to formulate more than one claim. Run on it, Prover9 tries to
find proofs for the given claims. The proof can be viewed and if one wants also be
stored. If Prover9 does not find a proof in reasonable time one can try to run the
counterexample searcher Mace4 on the same file. It will search for an interpretation

128

12.1 Formalisation in Prover9/Mace4

% Language Options

op(500, infix, "+").

op(490, infix, ";").

% commutative additive monoid

x + y = y + x.

x + 0 = x.

x + (y + z) = (x + y) + z.

% multiplicative monoid

x;1 = x & 1;x = x.

x;(y;z) = (x;y);z.

% annihilation laws

0;x = 0 & x;0 = 0.

% idempotency

x + x = x.

% distributivities

x;(y + z) = x;y + x;z.

(x + y);z = x;z + y;z.

% natural order

leq(x,y) <-> x + y = y.

% standard axioms for tests

test(0) & test(1).

all p all q (test(p) & test(q) -> c(p+q) = c(p);c(q) &

c(p;q) = c(p)+c(q)).

all p (test(p) -> p;c(p) = 0 & p+c(p) = 1).

all p (test(p) -> c(c(p))=p).

% additional axiom, since c() has to be a total function

-test(x) -> c(x) = 0.

Figure 12.1: Assumptions Part of a Prover9 Inputfile for Idempotent Semirings with Tests
129

12 Automated Theorem Provers

of the assumptions which makes the claims false. If there is no goal Mace4 will
find a model satisfying all assumptions, if possible. However, it will find only finite
counterexamples and models.

So if we choose the obviously true goal (x + x) + y = x + (y + x), Prover9 will
find a proof immediately. However, if we choose the false goal x;y = y;x, Prover9 will
not find a proof (it will not terminate) but Mace4 finds a counterexample with four ele-
ments in almost instant time. This can be found in the files x_dot_y_equ_y_dot_x.in,
x_dot_y_equ_y_dot_x.model, x_plus_x_plus_y_equ_x_plus_y_plus_x.in and
x_plus_x_plus_y_equ_x_plus_y_plus_x.proof from the folder misc (see again Ap-
pendix A).

The axioms from Figure 12.1 do not cover all the material we used in Section 11 so
we extended it by the axioms from Figure 12.2 which deal with atomic tests and their
properties.

The definition of an atomic test is a straightforward translation of Definition 11.2.1
and Definition 11.2.2. The predicate elem(x,y) was introduced as an abbreviation
for the fact that x is an atomic test, y is a test and x is at most y. In the rela-
tional interpretation of semirings with tests as presented in Section 11 this predicate
corresponds to the element relation which explains the naming.

The next axiom states that the set of tests is atomic, i.e. that every test equals the
supremum of all atomic test which are lowerequal. If we use the following character-
isation of the supremum

x = sup(A)⇔ ∀y : (x ≤ y ⇔ ∀a ∈ A : a ≤ y)

we obtain the formula from Figure 12.2. It is interesting that this corresponds to the
elementary set theoretic characterisation A ⊆ B ⇔ ∀ x : x ∈ A ⇒ x ∈ B.

Using this characterisation, we proved some basic set theoretic theorems which can be
found in the folder atest/. E.g., the elementary property x ∈ A⇔ x /∈ A is covered
by the file atest_z_and_test_x_impl_elem_z_c_x_iff_not_elem_z_x.in.

In this case we used some lemmata, i.e., claims proved in other files. The names of
these additional files can be found at the beginning of the assumptions part and the
actual theorems together with their names again at the end of this part after the line %
lemmata. In this special case we split the equivalence elem_z_c_x_iff_not_elem_z_x
of the theorem we want to prove into two implications. This is a well-known approach
in such cases because Prover9 often shows weakness if it is confronted with equiva-
lences. Sometimes this can be avoided by splitting A⇔ B into A⇒ B and B ⇒ A.
If both implications can be proved they can be added to the input file and the final
proof will be found.

The formalisation of the modal operators is shown in Figure 12.3. We decided to omit

130

12.1 Formalisation in Prover9/Mace4

% atomic test

atest(x) <-> (-(x=0) & test(x) &

(all p ((test(p) & leq(p,x) & p!=0) -> p=x))).

% atomicity of test set

(test(x) & test(y)) ->

(leq(x,y) <-> (all p (atest(p) -> (leq(p,x) -> leq(p,y))))).

% element relation

elem(x,y) <-> (atest(x) & test(y) & leq(x,y)).

Figure 12.2: Properties of Atomic Tests in Prover9

the definition of the box operators because they were not of interest in the further
course, and an abundance of axioms can lead Prover9 into blind alleys by creating
too many superfluous clauses.

The definition of the diamond operators deviates from the one in Definition 11.4.1.
We did it in Prover9 via the so called domain and codomain operators. For a semiring
S the domain operator p· : S → test(S) is a function which assigns to every semiring
element a test, defined by the following axioms:

• ∀x ∈ S ∀p ∈ test(S) : p(px) = p · px

• ∀x ∈ S : (px) · x = x

• ∀x, y ∈ S : p(xy) = p(x · py)

Symmetrically, the codomain operator ·q : S → test(S) is defined by the following
axioms:

• ∀x ∈ S ∀p ∈ test(S) : (xp)q = (xq) · p

• ∀x ∈ S : x · xq = x

• ∀x, y ∈ S : (xy)q = ((xq) · y)q

In the semiring of relations the domain and codomain model the preimage and the
image of a relation, resp. Using these operators the forward and backward diamonds
can be defined via the following equations:

131

12 Automated Theorem Provers

% axioms for domain

test(dom(x)).

all p (test(p) -> dom(p;x) = p;dom(x)).

dom(x);x = x.

dom(x;y) = dom(x;dom(y)).

% axioms for codomain

test(cod(x)).

all p (test(p) -> cod(x;p) = cod(x);p).

x;cod(x) = x.

cod(x;y) = cod(cod(x);y).

% forward diamond

all p (test(p) -> fd(x,p) = dom(x;p)).

-test(y) -> fd(x,y) = 0.

% backward diamond

all p (test(p) -> bd(x,p) = cod(p;x)).

-test(y) -> bd(x,y) = 0.

Figure 12.3: Modal Operators in Prover9

• |x〉p = p(xp)

• 〈x|p = (px)q

The second axioms for the domain and codomain operator in Figure 12.3 are necessary
to make them well defined total functions.

These two definitions of the diamond operators (Definition 11.4.1 and the definition
from Figure 12.3 are indeed equivalent (see e.g. [DMS06]). In the folder misc the
reader can find proofs that the given definition implies the one from Definition 11.4.1.
We used these properties in some other cases.

Now we will formalise bisimulations in Prover9, as shown in Figure 12.4. Here we de-
viate from Chapter 11 because the approach presented there contains a lot of material
which can not be expressed in first order logic and hence is not suitable as input for
Prover9.

In our formalisation we will only consider bisimulations between unlabelled graphs.

132

12.1 Formalisation in Prover9/Mace4

% carrier function

carr(x) = dom(x) + cod(x).

% z is bisimulation between x and y

bisim(z,x,y) <-> (

% z is left- and righttotal

dom(z) = carr(y) & cod(z) = carr(x) &

% z is simulation between x und y

all p(test(p) -> leq(fd(z,fd(x,p)) , fd(y,fd(z,p)))) &

% converse of z is simulation between y und x

all p(test(p) -> leq(bd(z,fd(y,p)) , fd(x,bd(z,p))))).

% bisimilarity of x and y

bisimilar(x,y) <-> exists a (bisim(a,x,y)).

Figure 12.4: Carrier Function and Bisimulation in Prover9

Then a bisimulation between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a left
and right total relation B ⊆ V1 × V2 with the following properties:

• B◦;E1 ⊆ E2;B
◦

• B;E2 ⊆ E1;B

These requirements are the same as in Definition 4.2.1 and the subsequent discussion.
In our formalisation we found it a little bit more convenient to consider a relation
between V2 and V1 (the variable z in Figure 12.4) which does not change a lot since
we reason simply about B◦ instead of B.

Left and right totality are expressed via the carrier function which is simply the sum
of the domain and codomain (see the first and second line of Figure 12.4). This does
not express exactly totality in the relational sense: if G1 or G2 contains isolated nodes
they will be ‘overlooked’ by the carrier function. So our definition in Figure 12.4 is
suitable only for systems without isolated nodes. This is no great restriction because
in most cases we analysed isolated nodes were not of interest.

However, if we want to deal with the expansion operation we have to take care of
this fact. After refining a model it can happen that the refined model contains iso-
lated nodes (cf. the refinement we computed in Subsection 7.3.1: there a and b were
isolated). So if we want to formalise the expansion operation analogously to Theo-
rem 6.3.2 we have to adapt the term of bisimulation (this takes place in the definition
of a comprehensive bisimulation). This leads to the definitions given in Figure 12.5.

133

12 Automated Theorem Provers

% z is comprehensive bisimulation between x and y

comp_bisim(z,x,y) <-> (

% z comprehends both carriers

leq(carr(y),dom(z)) & leq(carr(x),cod(z)) &

% z is simulation between x und y

all p(test(p) -> leq(fd(z,fd(x,p)) , fd(y,fd(z,p)))) &

% converse of z is simulation between y und x

all p(test(p) -> leq(bd(z,fd(y,p)) , fd(x,bd(z,p))))).

% x1 is expansion of y1

exp(x1,y1,x,y,z) <-> (

% z is bisimulation between x and y,

% x1 and y1 are submodels of x and y, resp., and

% z is comprehensive bisimulation between x1 and y1

bisim(z,x,y) & leq(x1,x) & leq(y1,y) & comp_bisim(z,x1,y1) &

% x1 is the greatest model with these properties

all x2(leq(x2,x) & comp_bisim(z,x2,y1) -> leq(x2,x1))).

Figure 12.5: Expansion in Prover9

12.2 Experiments with Prover9

We used these formalisations for some experiments with Prover9. As mentioned
above, the results can be found under [Glüa] (in English) and [Glüb] (in German).
An extensive documentation of the results is the content of Appendix A.

12.2.1 Approach and Additional Predicates

Working with Prover9 holds some surprises, both pleasant and less pleasant ones.
In some cases Prover9 discovers difficult proofs in amazingly short time, in other
cases it does not succeed in proving simple facts. Often it shows problems if the
claim which is to be proven has the form A ⇒ B ∧ C. Even in simple cases it
can happen that it searches a proof for hours without finding it. This behaviour
can be cured in a lot of cases if one proves both A ⇒ B and A ⇒ C separately,
then adds these two claims to the set of support and starts a new run. There are
cases where Prover9 does not find a proof even under these assumptions because it
concentrates to much on other axioms. The radical remedy is to remove all others
formulas except A⇒ B and A⇒ C. A good example for this approach can be found
in the file atest_z_and_test_x_impl_elem_z_c_x_iff_not_elem_z_x.in from the

134

12.2 Experiments with Prover9

folder atest.

The theorems we proved are listed in Appendix A. We briefly describe some additional
predicates we introduced.

• The predicate bisimilar(x,y) is defined by

bisimilar(x,y) <-> exists a (bisim(a,x,y)).

It simply states that x and y are bisimilar.

• The predicate live(x) is defined by

live(x) <-> leq(cod(x),dom(x)).

In the relational setting, it means that every node with an ingoing edge has also
an outgoing edge.

• The predicate lp(x1,x) is defined by

lp(x1,x) <-> leq(x1,x) & live(x1).

This means that x1 is live and a submodel of x, i.e., x1 is a live part of x.

• The predicate glp(x1,x) is defined by

glp(x1,x) <-> (lp(x1,x) & all x2(lp(x2,x) -> leq(x2,x1))).

It states that x1 is the greatest live part of x. In the terminology of models,
this means that x1 is the greatest live submodel of x.

• The predicate pscon(x,y) is defined by

pscon(x,y) <-> (all p(test(p) -> fd(x,p) = bd(y,p))).

It corresponds to Definition 11.7.2.

135

12 Automated Theorem Provers

12.2.2 Experimental Results

As one can see in Appendix A, we could prove a lot of properties using Prover9.
However, this was possible only with human interaction. This is a well-known prob-
lem, e.g. in [Höf09] most of the proofs demanded human intervention by addition or
removal of theorems or splitting equalities into two inequalities. The general problem
seems to be that Prover9 does not have a kind of human intuition at its disposal and
can not distinguish between useful and less useful directions of search.

Problems of this kind were and are discussed at numerous occasions (see [IJC] or [CAD])
so we will not go into detail. We summarise that Prover9 is not well suitable for auto-
mated reasoning in our area but it is a valuable tool for interactive verification. Other
conclusions will be discussed in the concluding Section 13.2.

136

Chapter 13

Conclusion

Finally, we take a look back and summarise the material, and take a look
ahead onto future work and sketch further ideas for subsequent research.
Some questions remained open or arose during the work on this thesis
which will also be discussed.

13.1 Summary

The main purpose of this thesis was to investigate an approach for model refinement
using bisimulation quotients. Starting from a simple and ad hoc solved puzzle in
Chapter 3 we developed a comprehensive framework for a widespread variety of al-
gorithmic problems. It covers both qualitative problems like in Chapter 7 as well as
quantitative aspects like in Chapters 8 and 10 and theoretical considerations like in
Chapter 9. The problem area from Chapter 7 is closely related to temporal logic and
has applications in control theory and the theory of hybrid systems. In Chapter 8 we
developed a general framework for cost functions in a set-labelled graph which can
serve to describe a lot of optimality problems in graphs such as shortest walks, max-
imum reliability and related terms. Stochastic games, as investigated in Chapter 10,
arise in the context of fuzzy decision making.

Our basic idea was to solve a problem not on an original instance but on an instance
with equivalent dynamic behaviour but possibly smaller size. This was achieved by

13 Conclusion

means of bisimulation equivalences, a relation on the nodes of a transition system.
Under certain circumstances, we also could tackle infinite systems if the constructed
equivalent system has a finite number of states. Because semirings are a well suitable
tool for algebraic reasoning about relations we could also give an algebraic approach
via the theory of semirings in Chapter 11 and used the tools we developed there to
employ automated theorem provers as described in Chapter 12.

For every refinement algorithm under consideration we investigated its compatibility
with bisimulation equivalences and analysed the complexity of the quotient-based
variant as sketched generically in Algorithm 1. In most cases it was possible to show
a potential speed-up.

Besides the investigation of that approach we dealt with related problems. In Subsec-
tion 4.1.2 we proposed a data structure for set-labelled graphs which we used in later
chapters in the implementation of refinement algorithms and the analysis of their run-
ning time. General problems of refineability were considered in Sections 8.4 and 8.5.
There we investigated under which circumstances target models are refinable.

13.2 Future Work and Open Questions

For every algorithm we analysed its complexity and analysed whether it can lead to
a speed-up compared to the immediate application of an algorithm to the original
system. In most cases, we could show the possibility of a speed-up. However, we did
not test our approach on real world instances, so the next step should be the test on
examples from practice.

Another branch of future work should search for a more general characterisation of
problems which can be treated with our approach. For example, we did not tackle
NP-complete problems. On the other hand, problems in P (Chapters 7 and 8) or
even in NP ∩coNP (Chapter 10) are compatible with bisimulation equivalences. For
some classes of qualitative problems as CTL∗ or acceptance of finite automata, there
are already results concerning bisimulations. However, a general characterisation
scheme seems to be unknown and will be a challenge for future research in logic.
A similar branch of research should be the application of interactive higher-order
theorem provers like Isabelle or Coq instead of Mace4 as in Chapter 12. This will also
open the door for more practical applications.

In the context of Chapter 7 we dealt with a set F of ‘good’ nodes and investigated
properties involving this set. There are other related problems which besides F con-
sider a second set G and formalise properties of the form 2F → 3G and deal with
similar formulae from temporal logic. An approach analogous to the one from Chap-
ter 7 should work in this cases, too, but needs to be analysed.

138

13.2 Future Work and Open Questions

In Chapter 8 we showed in Theorem 8.2.2 the existence of optimal walks in a target
model with finite label set and an associated cumulative s-dioid. However, this does
not mean immediately that a target model with these properties is refineable. The
intuition is that it is refineable but an exact proof is still missing.

The original formulation of Stochastic Games as given in [Sha53] is more general than
the notion of SSGs we used in Chapter 10 (although the two terms are equivalent in a
certain sense). The question arises whether an adapted version of the algorithms from
Chapter 10 are also applicable to Stochastic Games as defined in [Sha53]. Intuitively,
this should be possible but it will require exact and thorough elaboration.

The formalisation from Chapter 11 used a semiring with atomic test set, and some of
the proofs used this property. In Chapter 12 we used atomic tests only for theorems
concerning set theory. The question arises whether some theorems from Chapter 11
hold also if the atomicity of the test set is dropped (provided a reasonable definition
of the properties under consideration without atomic tests is possible). Mace4 is no
suitable tool for finding a counterexample because it can only find finite models. But
clearly, in every finite semiring S, test(S) is atomic.

An extension of modal semirings is the concept of a Kleene algebra with domain
(see [DMS06]) which captures finite iteration by the Kleene star operation. It is well
known that the Kleene star can be used to model optimality problems as in Chapter 8.
So it seems to be promising to integrate the Kleene star operation into the framework
developed in Chapter 11. The same holds for the Omega operator (see [Coh00])
which models infinite iteration. It should also be tried to extend the framework from
Chapter 11 in such a way that it can also describe labelled transition systems (recall
that the running example from Page 99 was a simple relation without edge labels).
This can lead to an algebra suitable for verification of practical applications derived
from the framework we developed in Chapter 8.

139

Appendix A

Results of Prover9

This chapter is dedicated to the experiments we did with Prover9. We
explain the structure of the files and summarise the results in table form.

A.1 Namings

In general, input files are characterised by the extension .in, proofs generated by
Prover9 by .proof and counterexamples found by Mace4 by .model. Associated
files have the same file name but different extensions, so <filename>.proof is the
proof generated by Prover9 run on the input file <filename>.in. Analogously, if
Mace4 finds a counterexample for the input file <filename>.in it can be found in
<filename>.model. The actual file name is derived from the goal by omitting all
quantifiers and parentheses. Every implication is substituted by impl, every reverse
implication (⇐) by isimpl, every equivalence by iff, every addition by plus and
every multiplication by dot. Conjunction and disjunction become and and or, resp.
Equality is denoted by equ, less- or equality by leq and inequality by neq. The
constants 0 and 1 are represented by zero and one, resp. For better readability,
the name is structured by underlines. Predicate names like bisim or others (see
later) remain untouched. So an input file with the goal bisimilar(x,y) & live(x)

-> live(y) is named bisimilar_x_y_and_live_x_impl_live_y.in (see the folder
live).

A Results of Prover9

There may be exceptions from these rules if the claim can be characterised otherwise
in a concise way. So the input file with the goal cod(x+y) = cod(x) + cod(y) is
named codomain_is_additive.

A.2 Folder Structure

The folders are organised as follows:

• atest: This folder deals with properties of atomic tests (which correspond to
set theoretic theorems). In the associated Table A.1 we use the element sign ∈
both for the traditional element relation (as in x, y ∈ atest) and for the elem

predicate we introduced in Chapter 12 (as in z ∈ x).

• expansion: This folder deals with the expansion operation as defined in Fig-
ure 12.5. Among other properties, we showed that the expansion of a live model
is also live.

• id_bisim: This folder shows that the identity on the carrier set (modelled by
carr(x)) is a bisimulation.

• live: This folder is about the live-predicate and its derivatives lp and glp

(see Subsection 12.2.1).

• misc: This folder contains lemmata we use in a lot of input files. It involves
properties of the natural order, test properties, properties of the modal opera-
tors and an alternative characterisation of the diamond and box operators (cf.
Definition 11.4.1). In contrast to the other folders the imported lemmata are
completely listed. A special case is the file x_dot_y_equ_y_dot_x.in because
there is no corresponding .proof-file but a .model-file with the same name (cf.
Section 12.1) and is not listed in the corresponding table.

• pscon: This folder’s main theorem shows that pscon(x,y) implies pscon(y,x).
It is used in the folder symm_bisim.

• sum_bisim: This folder’s main theorem shows that bisimulations are closed
under finite sum (bisim(z1,x,y) ∧ bisim(z2,x,y) ⇒ bisim(z1+z2,x,y)).
In a quantale, bisimulations are closed under arbitrary sum but due to the
limitations of first order logic this could not be used as input for Prover9.

• symm_bisim: This folder contains the proof that the bisimilarity relation is
symmetric. More precisely, it shows that bisim(x,z1,z2) and pscon(x,y)

imply bisim(y,z2,z1).

142

A.3 Table Structure

• top: This folder deals with some properties of the greatest element ⊤.

• trans_bisim: This folder shows that the bisimulation relation is transitive.
The main theorem of this folder is bisim(x12,z1,z2) ∧ bisim(x23,z2,z3)⇒
bisim(x23;x12,z1,z3).

A.3 Table Structure

Each table consists of four columns with the following namings and meanings:

• name: This column simply gives the name of the file in the corresponding folder
without its extension. As explained in Section A.1, <name>.in is an input file
for Prover9, <name>.proof is the corresponding proof given by Prover9 and
<name>.model contains a counterexample produced by Mace4.

• theorem: This column contains the claim of the corresponding file in a better
human-readable writing. By default, are variables are universally quantified.
The notations are the same as in Chapters 11 and 12. Occasional deviations
are explained in Section A.2.

• additional theorems: This column’s entry equals ‘no’ if no additional theorems
beside the basic definitions given in Chapter 12 were used. The entry equals
‘misc’ if only theorems from the misc-folder were inserted. An entry ‘yes’ indi-
cates the use of additional theorems (see also Chapter 12 about the imports).
We did not indicate the cases where axioms were removed.

• time: This column gives the time in seconds Prover9/Mace4 took for the proof/-
counterexample. The test runs were done under Linux using an Intel(R) Pen-
tium(R) 4 CPU 2.80GHz and version 2009-02A of Prover9 from February 2009
(the input files were created using the GUI from [McC] which comes along with
the version 0.5 of Prover9Mace4 from December 2007). Possibly, other environ-
ments can lead to slightly different results. The values are rounded to the next
integer.

A.4 Tabular Results

The following pages show the content of the folders as explained in the previous
Section A.3.

143

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

atest_x_and_atest_y_and_x_neq_y_impl_ x, y ∈ atest ∧ x 6= y ⇒ no 0 s

not_atest_x_plus_y x+ y /∈ atest

atest_x_and_atest_y_impl_ x, y ∈ atest⇒ no 3 s

x_dot_y_equ_x_or_x_dot_y_equ_zero x · y = x ∨ x · y = 0

atest_z_and_test_x_impl_ z, x ∈ atest⇒ yes 0 s

elem_z_c_x_iff_not_elem_z_x (z ∈ ¬x⇔ z /∈ x)

atest_z_and_test_x_impl_ z, x ∈ atest⇒ yes 1 s

elem_z_c_x_impl_not_elem_z_x (z ∈ ¬x⇒ z /∈ x)

atest_z_and_test_x_impl_ z, x ∈ atest⇒ yes 1 s

elem_z_x_iff_z_dot_x_equ_z (z ∈ x⇔ z · x = z)

atest_z_and_test_x_impl_ z ∈ atest ∧ x ∈ test⇒ yes 2 s

elem_z_x_impl_not_elem_z_c_x (z ∈ x⇒ z /∈ ¬x)

atest_z_and_test_x_impl_ z ∈ atest ∧ x ∈ test⇒ yes 39 s

not_elem_z_x_impl_elem_z_c_x (z /∈ x⇒ z ∈ ¬x)

atest_z_and_test_x_impl_ z ∈ atest ∧ x ∈ test⇒ yes 4 s

not_elem_z_x_impl_z_dot_x_equ_zero (z /∈ x⇒ z · x = 0)

different_sets_contain_different_elements x, y ∈ test ∧ x 6= y ⇒ no 4 s

∃a : a ∈ x ∧ a /∈ y ∨ a ∈ y ∧ a /∈ x
disjoint_sets_contain_different_elements x, y ∈ test ∧ x · y = 0⇒ no 6 s

(z ∈ x⇒ z /∈ y)

test_x_and_test_y_impl_ x, y ∈ test⇒ (x ≤ y ⇔ x · y = x) yes 10 s

leq_x_y_iff_x_dot_y_equ_x

test_x_impl_test_c_x x ∈ test⇒ ¬x ∈ test no 0 s

T
a
b
le

A
.1

:
C

o
n
ten

t
o
f
a
t
e
s
t

1
4
4

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

bisim_z_x_y_impl_comp_bisim_z_x_y bisim(z, x, y)⇒ comp_bisim(z, x, y) yes 0 s

bisim_z_x_y_impl_exp_x_y_x_y_z bisim(z, x, y)⇒ exp(x, y, x, y, z) yes 0 s

bisim_z_x_y_impl_ bisim(z, x, y)⇒ carr(x) ≤ zq misc 0 s

leq_carr_x_cod_z

bisim_z_x_y_impl_ bisim(z, x, y)⇒ carr(y) ≤ pz misc 0 s

leq_carr_y_dom_z

comp_bisim_z_x_y_and_live_y_impl_ comp_bisim(z, x, y) ∧ live(y)⇒ yes 336 s

live_x live(x)

expansion_is_unique exp(x1, y1, x, y, z)∧ no 3 s

exp(x2, y1, x, y, z)⇒ x1 = x2

expansion_of_live_is_live exp(x1, y1, x, y, z) ∧ live(y1)⇒ yes 0 s

live(x1)

test_x_and_leq_carr_y_x_impl_ test(x) ∧ carr(y) ≤ x⇒ yes 3 s

x_dot_y_equ_y_and_y_dot_x_equ_y x · y = y ∧ y · x = y

test_x_and_leq_cod_y_x_impl_ test(x) ∧ yq ≤ x⇒ misc 2 s

y_dot_x_equ_y y · x = y

test_x_and_leq_dom_y_x_impl_ test(x) ∧ py ≤ x⇒ misc 1 s

x_dot_y_equ_y x · y = y

T
a
b
le

A
.2

:
C

o
n
ten

t
o
f
e
x
p
a
n
s
i
o
n

1
4
5

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

bisim_carr_x_x_x bisim(carr(x), x, x) yes 0 s

cod_carr_x_equ_carr_x (carr(x))q = carr(x) misc 1 s

dom_carr_x_equ_carr_x p(carr(x)) = carr(x) misc 1 s

leq_fd_carr_x_bd_x_p_ |carr(x)〉〈x|p ≤ |x〉〈carr(x)|p misc 12 s

fd_x_bd_carr_x_p

leq_fd_carr_x_fd_x_p_ |carr(x)〉|x〉p ≤ |x〉|carr(x)〉p yes 3 s

fd_x_fd_carr_x_p

T
a
b
le

A
.3

:
C

o
n
ten

t
o
f
i
d
_
b
i
s
i
m

1
4
6

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

bisimilar_x_y_and_live_x_impl_ bisimilar(x, y) ∧ live(x)⇒ misc 17 s

live_y live(y)

bisimilar_x_y_and_live_y_impl_ bisimilar(x, y) ∧ live(y)⇒ yes 0 s

live_x live(x)

bisim_z_x_y_and_live_y_impl_ bisim(z, x, y) ∧ live(y)⇒ misc 2 s

live_x live(x)

glp_is_unique glp(x1, x) ∧ glp(x2, x)⇒ x1 = x2 misc 0 s

live_x_and_live_y_impl_ live(x) ∧ live(y)⇒ misc 0 s

live_x_plus_y live(x+ y)

live_x_impl_glp_x_x live(x)⇒ glp(x, x) misc 0 s

lp_x1_x_and_lp_x2_x_impl_ lp(x1, x) ∧ lp(x2, x)⇒ misc 0 s

lp_x1_plus_x2_x lp(x1 + x2, x)

T
a
b
le

A
.4

:
C

o
n
ten

t
o
f
l
i
v
e

1
4
7

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

additivity_bd_1 〈x+ y|p = 〈x|p+ 〈y|p yes 0 s

additivity_bd_2 〈x|(p+ q) = 〈x|p+ 〈y|p yes 1 s

additivity_fd_1 |x+ y〉p = |x〉p+ |y〉p yes 0 s

additivity_fd_2 |x〉(p+ q) = |x〉p+ |y〉p yes 1 s

bd_y_dot_x_p_equ_ 〈y · x|p = 〈x|〈y|p no 0 s

bd_x_bd_y_p

codomain_is_additive (x+ y)q = xq + yq yes 2 s

codomain_is_ p ∈ test : yes 57 s

least_right_neutral (x · p = x⇔ xq ≤ p)

cod_p_equ_p p ∈ test : pq = p yes 1 s

complement_is_antitone p, q ∈ test : p ≤ q ⇒ ¬q ≤ ¬p no 6 s

complement_is_antitone_iff p, q ∈ test : p ≤ q ⇔ ¬q ≤ ¬p yes 0 s

complement_is_test p ∈ test⇒ ¬p ∈ test no 0 s

domain_is_additive p(x+ y) = px+ py yes 2 s

domain_is_ p ∈ test : yes 57 s

least_left_neutral (p · x = x⇔ px ≤ p)

dom_p_equ_p p ∈ test : pp = p yes 1 s

fd_x_dot_y_p_equ_ |x · y〉p = |x〉|y〉p no 0 s

fd_x_bd_y_p

T
a
b
le

A
.5

:
C

o
n
ten

t
o
f
m
i
s
c

(fi
rst

p
a
rt)

1
4
8

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

greatest_left_annihilator ¬p · x = 0⇔ px ≤ p yes 68 s

greatest_right_annihilator x · ¬p = 0⇔ xq ≤ p yes 56 s

isotonies x ≤ y ⇒ xz ≤ yz ∧ zx ≤ zy ∧ x+ z ≤ y + z no 1 s

leq_bd_x_p_c_q_iff_ 〈x|p ≤ ¬q ⇔ p · x · q = 0 yes 33 s

p_dot_x_dot_q_equ_zero

leq_bd_x_p_c_q_impl_ 〈x|p ≤ ¬q ⇒ p · x · q = 0 yes 1 s

p_dot_x_dot_q_equ_zero

leq_bd_x_p_c_q_isimpl_ 〈x|p ≤ ¬q ⇐ p · x · q = 0 yes 0 s

p_dot_x_dot_q_equ_zero

leq_carr_x_p_impl_ p ∈ test : carr(x) ≤ p⇒ no 16 s

p_dot_x_equ_x_and_ px = x ∧ xp = x

x_dot_p_equ_x

leq_cod_x_p_impl_ p ∈ test : xq ≤ p⇒ xp = x no 16 s

x_dot_p_equ_x

leq_cod_x_plus_y_p_iff_ p ∈ test : (x+ y)q ≤ p⇔ yes 0 s

leq_cod_x_plus_cod_y_p xq + yq ≤ p

leq_cod_x_plus_y_p_impl_ p ∈ test : (x+ y)q ≤ p⇒ yes 4 s

leq_cod_x_plus_cod_y_p xq + yq ≤ p

leq_cod_x_plus_y_p_isimpl_ p ∈ test : (x+ y)q ≤ p⇐ yes 0 s

leq_cod_x_plus_cod_y_p xq + yq ≤ p

T
a
b
le

A
.6

:
C

o
n
ten

t
o
f
m
i
s
c

(seco
n
d

p
a
rt)

1
4
9

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

leq_dom_x_p_impl_ p ∈ test : px ≤ p⇒ px = x no 8 s

p_dot_x_equ_x

leq_dom_x_plus_y_p_iff_ p ∈ test : p(x+ y) ≤ p⇔ yes 0 s

leq_dom_x_plus_dom_y_p px+ py ≤ p

leq_dom_x_plus_y_p_impl_ p ∈ test : p(x+ y) ≤ p⇒ yes 4 s

leq_dom_x_plus_dom_y_p px+ py ≤ p

leq_dom_x_plus_y_p_isimpl_ p ∈ test : p(x+ y) ≤ p⇐ yes 0 s

leq_dom_x_plus_dom_y_p px+ py ≤ p

leq_fd_x_q_c_p_iff_ |x〉q ≤ ¬p⇔ p · x · q = 0 yes 30 s

p_dot_x_dot_q_equ_zero

leq_fd_x_q_c_p_impl_ |x〉q ≤ ¬p⇒ p · x · q = 0 yes 1 s

p_dot_x_dot_q_equ_zero

leq_fd_x_q_c_p_isimpl_ |x〉q ≤ ¬p⇐ p · x · q = 0 yes 0 s

p_dot_x_dot_q_equ_zero

leq_is_antisymmetric px = y ⇔ x ≤ y ∧ y ≤ x no 5 s

leq_is_transitive x ≤ y ∧ y ≤ z ⇒ x ≤ z no 0 s

leq_p_dot_q_q_dot_p p, q ∈ test : pq ≤ qp yes 31 s

leq_cod_x_plus_cod_y_p

leq_p_q_iff_p_dot_c_q_equ_zero p, q ∈ test : p ≤ q ⇔ p · ¬q = 0 yes 0 s

leq_p_q_impl_p_dot_c_q_equ_zero p, q ∈ test : p ≤ q ⇒ p · ¬q = 0 no 2 s

leq_p_q_isimpl_p_dot_c_q_equ_zero p, q ∈ test : p ≤ q ⇐ p · ¬q = 0 yes 7 s

T
a
b
le

A
.7

:
C

o
n
ten

t
o
f
m
i
s
c

(th
ird

p
a
rt)

1
5
0

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

multiplication_on_tests p, q ∈ test : p · p = p ∧ p · q = q · p yes 0 s

sum_is_supremum x+ y ≤ z ⇔ x ≤ z ∧ y ≤ z no 1 s

test_cod_x xq ∈ test no 0 s

test_cod_x_plus_cod_y xq + yq ∈ test yes 0 s

test_dom_x px ∈ test no 0 s

test_dom_x_plus_dom_y px+ py ∈ test yes 0 s

test_fd_x_p_and_test_bd_x_p |x〉p ∈ test ∧ 〈x|p ∈ test yes 0 s

test_indirect_equality_1 p, q ∈ test : no 0 s

p = q ⇔ ∀r ∈ test : p ≤ r ⇔ q ≤ r

test_indirect_equality_2 p, q ∈ test : no 0 s

p = q ⇔ ∀r ∈ test : r ≤ p⇔ r ≤ q

test_is_closed p, q ∈ test : pq ∈ test ∧ p+ q ∈ test yes 0 s

test_multiplication_is_commmutative p, q ∈ test : p ≤ q ⇔ p · ¬q = 0 yes 1 s

test_multiplication_is_idempotent p ∈ test : p · p = p no 2 s

x_plus_x_plus_y_equ_x_plus_y_plus_x (x+ x) + y = x+ (y + x) no 0 s

zero_is_indivisible x+ y = 0⇔ x = 0 ∧ y = 0 no 0 s

T
a
b
le

A
.8

:
C

o
n
ten

t
o
f
m
i
s
c

(fo
u
rth

p
a
rt)

1
5
1

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

pscon_x_y_impl_bd_x_p_leq_fd_y_p pscon(x, y)⇒ 〈x|p ≤ |y〉p yes 3 s

pscon_x_y_impl_ 〈x|p ≤ |y〉p⇔ p · x · ¬|y〉p = 0 yes 0 s

bd_x_p_leq_fd_y_p_step_1

pscon_x_y_impl_ 〈x|p ≤ |y〉p⇐ p · x · ¬|y〉p = 0 misc 17 s

bd_x_p_leq_fd_y_p_step_1a

pscon_x_y_impl_ 〈x|p ≤ |y〉p⇒ p · x · ¬|y〉p = 0 misc 0 s

bd_x_p_leq_fd_y_p_step_1b

pscon_x_y_impl_ |x〉¬|y〉p ≤ ¬p⇔ p · x · ¬|y〉p = 0 misc 0 s

bd_x_p_leq_fd_y_p_step_2

pscon_x_y_impl_ (∀q ∈ test : |x〉q ≤ 〈y|q)⇒ misc 0 s

bd_x_p_leq_fd_y_p_step_3 (|x〉¬〈y|p ≤ ¬p⇐ 〈y|¬|y〉p ≤ ¬p)

pscon_x_y_impl_ 〈y|¬|y〉p ≤ ¬p⇔ ¬|y〉p · y · p = 0 yes 0 s

bd_x_p_leq_fd_y_p_step_4

pscon_x_y_impl_ 〈y|¬|y〉p ≤ ¬p⇒ ¬|y〉p · y · p = 0 misc 0 s

bd_x_p_leq_fd_y_p_step_4a

pscon_x_y_impl_ 〈y|¬|y〉p ≤ ¬p⇐ ¬|y〉p · y · p = 0 misc 0 s

bd_x_p_leq_fd_y_p_step_4b

pscon_x_y_impl_ |y〉p ≤ |y〉p⇔ ¬yp · y · p = 0 misc 0 s

bd_x_p_leq_fd_y_p_step_5

pscon_x_y_impl_ ¬|y〉p · y · p = 0 yes 0 s

bd_x_p_leq_fd_y_p_step_6

T
a
b
le

A
.9

:
C

o
n
ten

t
o
f
p
s
c
o
n

(fi
rst

p
a
rt)

1
5
2

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

pscon_x_y_impl_fd_y_p_leq_bd_x_p pscon(x, y)⇒ |y〉p ≤ 〈x|p yes 0 s

pscon_x_y_impl_ |x〉p ≤ 〈y|p⇔ ¬〈y|p · x · p = 0 yes 0 s

fd_y_p_leq_bd_x_p_step_1

pscon_x_y_impl_ |x〉p ≤ 〈y|p⇐ ¬|y〉p · x · p = 0 misc 15 s

fd_y_p_leq_bd_x_p_step_1a

pscon_x_y_impl_ |x〉p ≤ 〈y|p⇒ ¬|y〉p · x · p = 0 misc 0 s

fd_y_p_leq_bd_x_p_step_1b

pscon_x_y_impl_ 〈x|¬〈y|p ≤ ¬p⇔ ¬〈y|p · x · p = 0 misc 0 s

fd_y_p_leq_bd_x_p_step_2

pscon_x_y_impl_ (∀q ∈ test : 〈x|q ≤ |y〉q)⇒ misc 0 s

fd_y_p_leq_bd_x_p_step_3 (〈x|¬|y〉p ≤ ¬p⇐ |y〉¬〈y|p ≤ ¬p)

pscon_x_y_impl_ |y〉¬〈y|p ≤ ¬p⇔ p · y · ¬|y〉p = 0 yes 0 s

fd_y_p_leq_bd_x_p_step_4

pscon_x_y_impl_ |y〉¬〈y|p ≤ ¬p⇒ p · y · ¬|y〉p = 0 misc 0 s

fd_y_p_leq_bd_x_p_step_4a

pscon_x_y_impl_ |y〉¬〈y|p ≤ ¬p⇐ p · y · ¬|y〉p = 0 misc 0 s

fd_y_p_leq_bd_x_p_step_4b

pscon_x_y_impl_ 〈y|p ≤ 〈y|p⇔ p · y · ¬yp = 0 misc 0 s

fd_y_p_leq_bd_x_p_step_5

pscon_x_y_impl_ p · y · ¬〈y|p = 0 yes 0 s

fd_y_p_leq_bd_x_p_6

pscon_x_y_impl_pscon_y_x yes 0 s

T
a
b
le

A
.1

0
:

C
o
n
ten

t
o
f
p
s
c
o
n

(seco
n
d

p
a
rt)

1
5
3

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

bd_z1_plus_z2_fd_y_p_equ_ 〈z1 + z2||y〉p = 〈z1||y〉p+ 〈z2||y〉p misc 0 s

bd_z1_fd_y_p_plus_bd_z2_fd_y_p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ yes 0 s

bd_z1_plus_z2_fd_y_p_ 〈z1 + z2||y〉p = 〈z1||y〉p+ 〈z2||y〉p

equ_bd_z1_fd_y_p_plus_bd_z2_fd_y_p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ yes 0 s

bisim_z1_plus_z2_x_y bisim(z1 + z2, x, y)

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ misc 0 s

cod_z1_plus_z2_equ_carr_x (z1 + z2)q = carr(x)

bisim_z1_x_y_and_bisim_z2_x_y_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ misc 0 s

dom_z1_plus_z2_equ_carr_y p(z1 + z2) = carr(y)

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ yes 0 s

fd_x_bd_z1_plus_z2_p_equ_ |x〉〈z1 + z2|p = |x〉〈z1|p+ |x〉〈z2|p

fd_x_bd_z1_p_plus_fd_x_bd_z2_p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ misc 0 s

fd_y_fd_z1_p_plus_fd_y_fd_z2_p_equ_ |y〉|z1〉p+ |y〉|z2〉p = |y〉|z1 + z2〉p

fd_y_fd_z1_plus_z2_p

T
a
b
le

A
.1

1
:

C
o
n
ten

t
o
f
s
u
m
_
b
i
s
i
m

(fi
rst

p
a
rt)

1
5
4

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ misc 0 s

fd_z1_plus_z2_fd_x_p_equ_ |z1 + z2)〉|x〉p = |z1〉|x〉p+ |z2〉|x〉p

fd_z1_fd_x_p_plus_fd_z2_x_p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ yes 0 s

leq_bd_z1_fd_y_p_plus_bd_z2_fd_y_p_ 〈z1||y〉p+ 〈z2||y〉p ≤

fd_x_bd_z1_p_plus_fd_x_bd_z2_p |x〉〈z1|p+ |x〉〈z2|p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ yes 2 s

leq_bd_z1_plus_z2_fd_y_p_ 〈z1 + z2||y〉p ≤ |x〉〈z1 + z2|p

fd_x_bd_z1_plus_z2_p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ misc 5 s

leq_fd_z1_fd_x_p_plus_fd_z2_fd_x_p_ |z1〉|x〉p+ |z2〉|x〉p ≤

fd_y_fd_z1_p_plus_fd_y_fd_z2_p |y〉|z1〉p+ |y〉|z2〉p

bisim_z1_x_y_and_bisim_z2_x_y_impl_ bisim(z1, x, y)∧ bisim(z2, x, y)⇒ yes 0 s

leq_fd_z1_plus_z2_fd_x_p_ |z1 + z2〉|x〉p ≤ |y〉|z1 + z2〉p

fd_y_fd_z1_plus_z2_p

fd_x_bd_z1_plus_z2_p_equ_ |x〉〈z1 + z2|p = misc 0 s

fd_x_bd_z1_p_plus_fd_x_bd_z2_p |x〉〈z1|p+ |x〉〈z2|p

T
a
b
le

A
.1

2
:

C
o
n
ten

t
o
f
s
u
m
_
b
i
s
i
m

(seco
n
d

p
a
rt)

1
5
5

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

pscon_x_y_and_bisim_x_z1_z2_impl_ pscon(x, y) ∧ bisim(x, z1, z2)⇒ yes 0 s

bisim_y_z2_z1 bisim(y, z2, z1)

pscon_x_y_and_bisim_x_z1_z2_impl_ pscon(x, y) ∧ bisim(x, z1, z2)⇒ yes 6 s

cod_y_eq_carr_z2 yq = carr(z2)

pscon_x_y_and_bisim_x_z1_z2_impl_ pscon(x, y) ∧ bisim(x, z1, z2)⇒ yes 6 s

dom_y_eq_carr_z1 py = carr(z1)

pscon_x_y_and_bisim_x_z1_z2_impl_ pscon(x, y) ∧ bisim(x, z1, z2)∧ yes 8 s

leq_bd_y_fd_z1_p_fd_z2_bd_y_p p ∈ test⇒ 〈y||z1〉p ≤ |z2〉〈y|p

pscon_x_y_and_bisim_x_z1_z2_impl_ pscon(x, y) ∧ bisim(x, z1, z2)∧ yes 17 s

leq_fd_y_fd_z2_p_fd_z1_fd_y_p p ∈ test⇒ |y〉|z2〉p ≤ |z1〉|y〉p

T
a
b
le

A
.1

3
:

C
o
n
ten

t
o
f
s
y
m
m
_
b
i
s
i
m

1
5
6

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

bisim_one_top_top bisim(1,⊤,⊤) yes 0 s

cod_one_equ_carr_top 1q = carr(⊤) yes 0 s

cod_top_dot_p_equ_p p ∈ test : (⊤ · p)q = p misc 2 s

cod_top_equ_one ⊤q = 1 misc 1 s

dom_one_equ_carr_top p1 = carr(⊤) yes 0 s

dom_p_dot_top_equ_p p ∈ test : p(p · ⊤) = p misc 2 s

dom_top_equ_one p⊤ = 1 misc 1 s

leq_bd_one_fd_top_p_fd_top_bd_one_p 〈1||⊤〉p ≤ |⊤〉〈1|p yes 0 s

leq_fd_one_fd_top_p_fd_top_fd_one_p |1〉|⊤〉p ≤ |⊤〉|1〉p yes 0 s

p_neq_zero_impl_cod_p_dot_top_equ_one p ∈ test : p 6= 0⇒ (p · ⊤)q = 1 yes 8 s

p_neq_zero_impl_dom_top_dot_p_equ_one p ∈ test : p 6= 0⇒ p(⊤ · p) = 1 yes 8 s

top_dot_top_equ_top ⊤ · ⊤ = ⊤ yes 0 s

top_is_symmetric ⊤ is symmetric yes 9 s

T
a
b
le

A
.1

4
:

C
o
n
ten

t
o
f
t
o
p

1
5
7

A
R

esu
lts

o
f
P

rov
er9

name theorem additional time
theorems

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

bisim_x_23_dot_x12_z1_z3 bisim(x23 · x12, z1, z3)

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

carr_z2_equ_cod_x23 carr(z2) = x23q

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

cod_x23_dot_x12_equ_carr_z1 (x23 · x12)q = carr(z1)

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

dom_x23_dot_carr_z2_equ_ p(x23 · carr(z2)) = p(x23 · x23q)

dom_x23_dot_cod_23

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

dom_x23_dot_cod_x23_equ_carr_z3 p(x23 · x23q) = carr(z3)

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

dom_x23_dot_x12_equ_ p(x23 · x12) = carr(p(x23) · carr(z2))

carr_dom_x23_dot_carr_z2

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 4 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)⇒

dom_x23_dot_x12_equ_carr_z3 p(x23 · x12) = carr(z3)

T
a
b
le

A
.1

5
:

C
o
n
ten

t
o
f
t
r
a
n
s
_
b
i
s
i
m

(fi
rst

p
a
rt)

1
5
8

A
.4

T
a
b
u
la

r
R

esu
lts

name theorem additional time
theorems

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 5 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)∧ p ∈ test⇒

leq_bd_x12_bd_x23_fd_z3_p_ 〈x12|〈x23||z3〉p ≤ 〈x12||z2〉〈x23|p

bd_x12_fd_z2_bd_x23_p

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 5 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)∧ p ∈ test⇒

leq_bd_x12_fd_z2_bd_x23_p_ 〈x12||z2〉〈x23|p ≤ |z1〉〈x12|〈x23|

fd_z1_bd_x12_bd_x23_p

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)∧ p ∈ test⇒

leq_bd_x23_dot_x12_fd_z3_p_ 〈x23 · x12||z3〉p ≤ 〈x12|〈x23||z3〉p

bd_x12_bd_x23_fd_z3_p

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)∧ p ∈ test⇒

leq_bd_x23_dot_x12_fd_z3_p_ 〈x23 · x12||z3〉p ≤ |z1〉〈x23 · x12|

fd_z1_bd_x23_dot_x12_p

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 5 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)∧ p ∈ test⇒

leq_fd_x23_dot_x12_fd_z1_p_ |x23 · x12〉|z1〉p ≤ |z3〉|x23 · x12〉p

fd_z3_fd_x23_dot_x12_p

bisim_x12_z1_z2_and_ bisim(x12, z1, z2)∧ yes 0 s

bisim_x23_z2_z3_impl_ bisim(x23, z2, z3)∧ p ∈ test⇒

leq_fd_z1_bd_x12_bd_x23_p_ |z1〉〈x12|〈x23|p ≤ |z1〉〈x23 · x12|p

fd_z1_bd_x23_dot_x12_p

T
a
b
le

A
.1

6
:

C
o
n
ten

t
o
f
t
r
a
n
s
_
b
i
s
i
m

(seco
n
d

p
a
rt)

1
5
9

Bibliography

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley Series in Computer Science
and Information Processing, Addison Wesley, 1974.

[BA93] M. Ben-Ari, Mathematical logic for computer science, Prentice Hall,
1993.

[BAMP81] M. Ben-Ari, Z. Manna, and A. Pnueli, The temporal logic of branching
time, Conference Record of the Eighth Annual ACM Symposium on
Principles of Programming Languages — POPL 1981 (J. White, R. J.
Lipton, and P. C. Goldberg, eds.), ACM Press, 1981, pp. 164–176.

[BBR04] T. Brihaye, V. Bruyère, and J.-F. Raskin, Model-checking for weighted
timed automata, Joint International Conferences on Formal Modelling
and Analysis of Timed Systems and Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems – FORMATS/FTRTFT
(Y. Lakhnech and S. Yovine, eds.), Lecture Notes in Computer Science,
vol. 3253, Springer, 2004, pp. 277–292.

[BC75] R. C. Backhouse and B. A. Carré, Regular algebra applied to path-finding
problems, Journal of the Institute of Mathematics and Applications
(1975).

[Bel58] R.E. Bellman, On a routing problem, Quart. Appl. Math. 16 (1958),
87–90.

[Ber00] D. Bertsekas, Dynamic Programming and Optimal Control, Athena Sci-
entific, 2000.

[BG09] J.N. Billings and T.G. Griffin, A model of internet routing using
semi-modules, 11th International Conference on Relational Methods

BIBLIOGRAPHY

in Computer Science — RelMiCS 2009 (R. Berghammer, A.M. Jaoua,
and B. Möller, eds.), Lecture Notes in Computer Science, vol. 5827,
Springer, 2009, pp. 29–43.

[BHZ77] R. E. Burkard, W. Hahn, and U. Zimmermann, An algebraic approach
to assignment problems, Mathematical Programming (1977).

[Bir67] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc., 1967.

[BK08] C. Baier and J-P. Katoen, Principles of model checking, MIT Press,
2008.

[BL69] J. R. Büchi and L. H. Landweber, Solving sequential conditions by finite-
state strategies, Transactions of the American Mathematical Society
138 (1969), pp. 295–311.

[Bou04] A. Boulmakoul, Generalized path-finding algorithms on semirings and
the fuzzy shortest path problem, Journal of Computational and Applied
Mathematics 162 (2004), 263–272.

[BR83] S. D. Brookes and W. C. Rounds, Behavioural Equivalence Relations
Induced by Programming Logics, 10th Colloquium on Automata, Lan-
guages and Programming (J. Díaz, ed.), Lecture Notes in Computer
Science, vol. 154, Springer, 1983, pp. 97–108.

[CAD] CADE, http://www.cadeinc.org/, (accessed November 12, 2013).

[Car71] B. A. Carré, An algebra for network routing problems, IMA Journal of
Applied Mathematics (1971).

[Car80] , Graphs and networks, Oxford Univ. Press, 1980.

[CASa] CASC, http://www.cs.miami.edu/∼tptp/CASC/, (accessed November
5, 2013).

[CASb] Results of CACS-13, http://www.cs.miami.edu/∼tptp/CASC/13/
Results.html, (accessed November 5, 2013).

[Cas85] I. Castellani, Bisimulations and Abstraction Homomorphisms, Proceed-
ings of the International Joint Conference on Theory and Practice of
Software Development (TAPSOFT) (H. Ehrig, C. Floyd, M. Nivat, and
J. W. Thatcher, eds.), Lecture Notes in Computer Science, vol. 185,
Springer, 1985, pp. 223–238.

162

BIBLIOGRAPHY

[CGK+13] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P.
de Vink, W. Wesselink, and T. A. C. Willemse, An overview of the
mcrl2 toolset and its recent advances, Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference
– TACAS 2013 (N. Piterman and S. A. Smolka, eds.), Lecture Notes in
Computer Science, vol. 7795, Springer, 2013, pp. 199–213.

[CGP01] E. Clarke, O. Grumberg, and D. Peled, Model checking, 3rd ed., MIT
Press, 2001.

[Coh00] E. Cohen, Separation and reduction, Mathematics of Program Construc-
tion — MPC 2000 (R. C. Backhouse and J. N. Oliveira, eds.), Lecture
Notes in Computer Science, vol. 1837, Springer, 2000, pp. 45–59.

[Con] A. Condon, On algorithms for simple stochastic games, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 13.

[Con92] , The complexity of stochastic games, Information and Compu-
tation, vol. 96, 1992, pp. 203–224.

[DBL] DBLP, http://dblp.uni-trier.de/, (accessed August 16, 2013).

[Der72] C. Derman, Finite State Markov Decision processes, Academic Press,
1972.

[DGW13] D. Delling, A. V. Goldberg, and R. F. Werneck, Hub label compression,
Experimental Algorithms, 12th International Symposium — SEA 2013,
Lecture Notes in Computer Science, vol. 7933, Springer, 2013, pp. 18–
29.

[Dij] E. W. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische Mathematik 1.

[DMS06] J. Desharnais, B. Möller, and G. Struth, Kleene algebra with domain,
ACM Transactions on Computational Logic 7 (2006), 798–833.

[DMS11] J. Desharnais, B. Möller, and G. Struth, Algebraic notions of termina-
tion, Logical Methods in Computer Science 7 (2011), no. 1.

[DRDW06] L. Doyen, J.-F. Raskin, and M. De Wulf, A lattice theory for solving
games of imperfect information, 9th International Workshop on Hy-
brid Systems: Computation and Control – HSCC 2006 (J. P. Hespanha
and A. Tiwari, eds.), Lecture Notes in Computer Science, vol. 3927,
Springer, 2006, pp. 153–168.

163

BIBLIOGRAPHY

[DW13] D. Delling and R. F. Werneck, Faster customization of road networks,
Experimental Algorithms, 12th International Symposium — SEA 2013,
Lecture Notes in Computer Science, vol. 7933, Springer, 2013, pp. 30–
42.

[Ehm03] Thorsten Ehm, Pointer kleene algebra, Relational and Kleene-Algebraic
Methods in Computer Science: 7th International Seminar on Rela-
tional Methods in Computer Science and 2nd International Workshop
on Applications of Kleene Algebra – RelMiCS 2003 (R. Berghammer,
B. Möller, and G. Struth, eds.), Lecture Notes in Computer Science,
vol. 3051, Springer, 2003, pp. 99–111.

[EKL08] J. Esparza, S. Kiefer, and M. Luttenberger, Derivation tree analysis for
accelerated fixed-point computation, Developments in Language Theory
(I. Masami and T. Masafumi, eds.), Lecture Notes in Computer Science,
vol. 5257, Springer, 2008, pp. 301–313.

[EKMS94] M. Erné, J. Koslowski, A. Melton, and G. Strecker, A primer on galois
connections, Papers on general topology and its applications — 7th
Summer Conf. Wisconsin (S. et al Andima, ed.), Annals New York
Accd. Sci., vol. 704, 1994, pp. 103–125.

[EMS03a] T. Ehm, B. Möller, and G. Struth, Kleene modules, Relational and
Kleene-Algebraic Methods in Computer Science: 7th International Sem-
inar on Relational Methods in Computer Science and 2nd Interna-
tional Workshop on Applications of Kleene Algebra – RelMiCS 2003
(R. Berghammer, B. Möller, and G. Struth, eds.), Lecture Notes in
Computer Science, vol. 3051, Springer, 2003, pp. 112–124.

[EMS03b] , Kleene modules, Tech. Report 2003-10, Institut für Informatik,
Universität Augsburg, 2003.

[Fed80] A. Federgruen, Successive approximation methods in undiscounted
stochastic games, Operations Research 28 (1980), no. 3, 794–809.

[Fer90] J.-C. Fernandez, An implementation of an efficient algorithm for bisim-
ulation equivalence, Science of Computer Programming (1990), 219–236.

[FN08] S. Z. Fazekas and B. Nagy, Scattered Subword Complexity of non-
primitive Words, Journal of Automata, Languages and Combinatorics
13 (2008), no. 3, 233–247.

164

BIBLIOGRAPHY

[FSTV91] J. A. Filar, T. A. Schultz, F. Thuijsman, and O. J. Vrieze, Nonlinear
programming and stationary equilibria in stochastic games, Mathemat-
ical Programming 50 (1991), 227–237.

[FUMK06] H. Foster, S. Uchitel, J. Magee, and J. Kramer, Ltsa-ws: a tool for
model-based verification of web service compositions and choreography,
28th International Conference on Software Engineering – ICSE 2006
(L. J. Osterweil, H. D. Rombach, and M. L. Soffa, eds.), ACM, 2006,
pp. 771–774.

[Glüa] R. Glück, Personal Homepage (English),
https://www.informatik.uni-augsburg.de/

en/chairs/dbis/pmi/staff/glueck/PhD/, (accessed November 25,
2013).

[Glüb] , Personal Homepage (German),
https://www.informatik.uni-augsburg.de/

lehrstuehle/dbis/pmi/staff/glueck/PhD/, (accessed November 25,
2013).

[Glü11] , Using bisimulations for optimality problems in model refine-
ment, 12th International Conference on Relational and Algebraic Meth-
ods in Computer Science — RAMICS 2011 (H. de Swart, ed.), Lecture
Notes in Computer Science, vol. 6663, Springer, 2011, pp. 164–179.

[Glü12] , Two observations in dioid based model refinement, 13th Inter-
national Conference on Relational and Algebraic Methods in Computer
Science — RAMICS 2012 (T. G. Griffin and W. Kahl, eds.), Lecture
Notes in Computer Science, vol. 7560, Springer, 2012, pp. 235–247.

[GM08a] R. Glück and B. Möller, Circulations, fuzzy relations and semirings,
Mathematics of Program Construction — MPC 2008 (P. Audebaud
and C. Paulin-Mohring, eds.), Lecture Notes in Computer Science, vol.
5133, Springer, 2008, pp. 134–152.

[GM08b] M. Gondran and M. Minoux, Graphs, dioids and semirings, Springer,
2008.

[GMS09] R. Glück, B. Möller, and M. Sintzoff, A semiring approach to equiva-
lences, bisimulations and control, 11th International Conference on Re-
lational Methods in Computer Science — RelMiCS 2009 (R. Bergham-
mer, A.M. Jaoua, and B. Möller, eds.), Lecture Notes in Computer
Science, vol. 5827, Springer, 2009, pp. 134–149.

165

BIBLIOGRAPHY

[GMS11] , Model refinement using bisimulation quotients, 13th Interna-
tional Conference on Algebraic Methodology And Software Technology
— AMAST 2010 (M. Johnson and D. Pavlovic, eds.), Lecture Notes in
Computer Science, vol. 6486, Springer, 2011, pp. 76–91.

[GMvWU06] J. F. Groote, A. Mathijssen, M. van Weerdenburg, and Y. S. Usenko,
From µCRL to mCRL2, Electronic Notes in Theoretical Computer Sci-
ence 162 (2006), 191–196.

[HHW95] M. R. Henzinger, T. A. Henzinger, and Kopke. P. W., Computing sim-
ulations on finite and infinite graphs, FOCS, IEEE Computer Society
Press, 1995, pp. 453–462.

[Hig52] G. Higman, Ordering by Divisibility in Abstract Algebras, Proceedings
of the London Mathematical Society s3-2 (1952), no. 1, 326–336.

[HK66] A. J. Hoffman and R. M. Karp, On nonterminating stochastic games,
Management Science 12 (1966), no. 5, 359–370.

[HMCJF00] T. A. Henzinger, R. Majumdar, Mang F. Y. C., and Raskin J.-F., Ab-
stract interpretation of game properties, 7th International Symposium
on Static Analysis – SAS 2000 (J. Palsberg, ed.), Lecture Notes in Com-
puter Science, vol. 1824, Springer, 2000, pp. 220–239.

[Höf09] Peter Höfner, Algebraic calculi for hybrid systems, Ph.D. thesis, 2009.

[How66] R. A. Howard, Dynamic programming and markov processes, M.I.T.
Press, 1966.

[HS07] P. Höfner and G. Struth, Automated reasoning in Kleene algebra, Au-
tomated Deduction — CADE–21 (F. Pfennig, ed.), Lecture Notes in
Artificial Intelligence, vol. 4603, Springer, 2007, pp. 279–294.

[HS08] Peter Höfner and Georg Struth, On automating the calculus of re-
lations, 4th International Joint Conference on Automated Reasoning
— IJCAR–2008 (Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, eds.), Lecture Notes in Computer Science, vol. 5195, Springer,
2008, pp. 50–66.

[IJC] IJCAR, http://www.ijcar.org/, (accessed November 12, 2013).

[Inta] Intel 4004 Circuit, http://www.intel.com/Assets/PDF/General/
4004_schematic.pdf, (accessed November 25, 2013).

166

BIBLIOGRAPHY

[Intb] Intel Homepage, http://www.intel.com, (accessed November 25,
2013).

[JKM98] P. Jančar, A. Kučera, and R. Mayr, Deciding bisimulation-like equiv-
alences with finite-state processes, 25th International Colloquium on
Automata, Languages and Programming – ICALP’98 (K. G. Larsen,
S. Skyum, and G. Winskel, eds.), Lecture Notes in Computer Science,
vol. 1443, Springer, 1998, pp. 200–211.

[Jun05] Dieter Jungnickel, Graphs, networks and algorithms, 2nd ed., Springer
Verlag, 2005.

[Kaw06] Yasuo Kawahara, On the cardinality of relations, RelMiCS, 2006,
pp. 251–265.

[Kle52] S.C. Kleene, Introduction to metamathematics, Wolters-Noordhoff -
Groningen, 1952.

[Koz90] D. Kozen, On kleene algebras and closed semirings, Mathematical Foun-
dations of Computer Science 1990 — MFCS 1990 (B. Rovan, ed.), Lec-
ture Notes in Computer Science, vol. 452, Springer, 1990, pp. 26–47.

[Koz94] , A completeness theorem for kleene algebras and the algebra of
regular events, Information and Computation 110 (1994), no. 2, 366–
390.

[KPP09] H. Kugler, C. Plock, and A. Pnueli, Controller synthesis from lsc re-
quirements, 12th International Conference on Fundamental Approaches
to Software Engineering, FASE 2009 (M. Chechik and M. Wirsing, eds.),
Lecture Notes in Computer Science, vol. 5503, Springer, 2009, pp. 79–
93.

[KS90] P. C. Kanellakis and S. A. Smolka, CCS Expressions, Finite State Pro-
cesses, and Three Problems of Equivalence, Information and Computa-
tion 86 (1990), no. 1, 43–68.

[Kya66] L.G. Kyachiyan, A polynomial time algorithm for linear programming,
Soviet Math Dokl. 20 (1966), 359–370.

[LTS] LTSA, http://www.doc.ic.ac.uk/ltsa/, (accessed August 12, 2013).

[MB85] E. Manes and D. Benson, The inverse semigroup of a sum-ordered semi-
ring, Semigroup Forum 31 (1985), 129–152.

167

BIBLIOGRAPHY

[MC94] M. Melekopoglou and A. Condon, On the complexity of the policy im-
provement algorithm for markov decision processes, INFORMS Journal
on Computing 6 (1994), no. 2, 188–192.

[McC] W. W. McCune, Prover9 and Mace4,
http://www.cs.unm.edu/∼mccune/prover9, (accessed April 18,
2013).

[mCL] mCLR2, http://www.mcrl2.org, (accessed August 12, 2013).

[Mil80] R. Milner, A calculus of communicating systems, Lecture Notes in Com-
puter Science, vol. 92, Springer, 1980.

[Min76] M. Minoux, Structures algébriques généralisées des problèmes de chem-
inement dans les graphes: Théorèmes, algorithmes et applications,
R.A.I.R.O. Recherche Opérationnelle (1976).

[MM79] G. Milne and R. Milner, Concurrent processes and their syntax, Journal
of the ACM 26 (1979), no. 2, 302–321.

[Möl13] B. Möller, Modal knowledge and game semirings, Computer Journal 56
(2013), no. 1, 53–69.

[MP82] Z. Manna and A. Pnueli, Verification of concurrent programs: Temporal
proof principles, Logic of Programs, Workshop, Yorktown Heights, New
York, May 1981 (D. Kozen, ed.), Lecture Notes in Computer Science,
vol. 131, Springer, 1982, pp. 200–252.

[MP84] , Adequate proof principles for invariance and liveness properties
of concurrent programs, Science of Computer Programming 4 (1984),
no. 3, 257–289.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis, On the synthesis of discrete con-
trollers for timed systems (an extended abstract), 12th Annual Sympo-
sium on Theoretical Aspects of Computer Science — STACS 95 (E. W.
Mayr and C. Puech, eds.), Lecture Notes in Computer Science, vol. 900,
Springer, 1995, pp. 229–242.

[Myh57] J. Myhill, Finite automata and the representation of events, WADD
TR-57-624 (1957), 112–137.

[Ner58] A. Nerode, Linear automaton transformations, Proceedings of the
American Mathematical Society, vol. 9, 1958, pp. 541–544.

168

BIBLIOGRAPHY

[Plo76] G. D. Plotkin, A powerdomain construction, SIAM Journal on Com-
puting 5 (1976), no. 3, 452–487.

[Pnu77] Amir Pnueli, The temporal logic of programs, 18th Annual Symposium
on Foundations of Computer Science — FOCS18, IEEE Computer So-
ciety, 1977, pp. 46–57.

[Pou07] D. Pous, Complete lattices and up-to techniques, Programming Lan-
guages and Systems, 5th Asian Symposium, APLAS 2007, Singapore,
November 29-December 1, 2007 (S. Zhong, ed.), Lecture Notes in Com-
puter Science, vol. 4807, Springer, 2007, pp. 351–366.

[PT] R. Paige and R. Tarjan, Three partition refinement algorithms, SIAM
Journal on Computing 16(6).

[PV] A. Puhakka and A. Valmari, Liveness and fairness in process-algebraic
verification, Proceedings of the 12th International Conference on Con-
currency Theory — CONCUR 2001.

[RW89] P. J. Ramadge and W. M. Wonham, The control of discrete event sys-
tems, Proceedings of the IEEE 77, 1989, pp. 81–98.

[Sal03] A. Salomaa, Counting (scattered) Subwords, Bulletin of the EATCS 81
(2003), 165–179.

[Sha53] L.S. Shapley, Stochastic games, Proceedings of the National Academy
of Sciences, vol. 39, 1953, pp. 1095–1100.

[Son90] E. D. Sontag, Mathematical Control Theory, Springer, 1990.

[SS93] G. Schmidt and T. Ströhlein, Relations and graphs: Discrete mathe-
matics for computer scientists, Springer, 1993.

[Tar55] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pa-
cific Journal of Mathematics 5 (1955), no. 2, 285–309.

[TW91] J. G. Thistle and W. M. Wonham, Control of omega-automata, church’s
problem, and the emptiness problem for tree omega-automata, Computer
Science Logic, 5th Workshop — CSL5 (E. Egon Börger, G. Jäger, H. K.
Büning, and M. M. Richter, eds.), Lecture Notes in Computer Science,
vol. 626, Springer, 1991, pp. 367–382.

[TW94] , Control of infinite behavior of finite automata, SIAM Journal
on Control and Optimization Volume 32 (1994), no. 4, 1075–1097.

169

BIBLIOGRAPHY

[UCKM03] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, Ltsa-msc: Tool sup-
port for behaviour model elaboration using implied scenarios, Tools and
Algorithms for the Construction and Analysis of Systems - 9th Inter-
national Conference – TACAS 2003 (H. Garavel and J. Hatcliff, eds.),
Lecture Notes in Computer Science, vol. 2619, Springer, 2003, pp. 597–
601.

[vdW76] J. van der Wal, A successive approximation algorithm for an undis-
counted markov decision process, Computing 17 (1976), no. 2, 157–162.

[Vin00] R. Vinter, Optimal control, Birkhäuser, 2000.

[Win08] M. Winter, A relation-algebraic theory of bisimulations, Fundam. Inf.
83 (2008), no. 4, 429–449.

170

LIST OF FIGURES

List of Figures

3.1 First Stage . 8

3.2 Second Stage . 9

3.3 Situation after Treating 4 . 9

3.4 Third Stage . 10

3.5 Situation after Treating 5 . 10

3.6 Final Stage . 11

3.7 Strategy . 11

4.1 Part of a Mixed Representation before Removing an Edge Label . . . 17

4.2 Part of a Mixed Representation after Removing an Edge Label 18

6.1 Two ways for computing set valued preimages 31

6.2 A uniquely labelled model (left) and one of its quotients (right) 32

6.3 A model (left), a quotient (middle) and a possible expansion (right) . 33

7.1 A plant automaton (left) and its coarsest quotient (right) 36

7.2 A Family of Plant Automata . 51

7.3 Coarsest Quotients of Plant Automata 52

8.1 A Target Model . 56

8.2 Walks without Optimal Subwalks . 60

8.3 An Optimal Target Submodel . 63

8.4 Another Optimal Target Submodel . 63

8.5 A uniquely labelled Target Model (top left) with not uniquely labelled
coarsest quotient (top right), its label optimised coarsest quotient (bot-
tom left) and its expansion (bottom right) 71

8.6 A Coarsest Quotient . 72

8.7 An Optimal Quotient Target Submodel 73

8.8 A Part of a Model Family Mm with coarsest Quotients isomorphic to
M/B . 74

171

LIST OF FIGURES

10.1 An SSG (left) and the result after choosing a pair of strategies (right) 87
10.2 Replacing of a single outgoing edge . 89
10.3 A quotient SSG (left) and the result after choosing a pair of optimal

strategies (right), together with optimal node values 90

12.1 Assumptions Part of a Prover9 Inputfile for Idempotent Semirings with
Tests . 129

12.2 Properties of Atomic Tests in Prover9 131
12.3 Modal Operators in Prover9 . 132
12.4 Carrier Function and Bisimulation in Prover9 133
12.5 Expansion in Prover9 . 134

172

LIST OF TABLES

List of Tables

7.1 Control Objectives and Associated Fixpoint Equations 40
7.2 Example Execution of Algorithm 4 . 43

A.1 Content of atest . 144
A.2 Content of expansion . 145
A.3 Content of id_bisim . 146
A.4 Content of live . 147
A.5 Content of misc (first part) . 148
A.6 Content of misc (second part) . 149
A.7 Content of misc (third part) . 150
A.8 Content of misc (fourth part) . 151
A.9 Content of pscon (first part) . 152
A.10 Content of pscon (second part) . 153
A.11 Content of sum_bisim (first part) . 154
A.12 Content of sum_bisim (second part) 155
A.13 Content of symm_bisim . 156
A.14 Content of top . 157
A.15 Content of trans_bisim (first part) 158
A.16 Content of trans_bisim (second part) 159

173

List of Algorithms

1 Abstract Generic Algorithm . 2
2 Explicit Fixpoint Computation for the Case (F,2) 40
3 Explicit Fixpoint Computation for the Case (F,3) 40
4 Explicit Fixpoint Computation for the Case (F,32) 41
5 Explicit Fixpoint Computation for the Case (F,23) 41
6 Implementation of Algorithm 3 . 46
7 Computing a Controller via the Coarsest Quotient 50
8 Dijkstra-like Algorithm in Case of Edge Labels from a Cumulative S-

Dioid . 65
9 Floyd-Warshall-like Algorithm in the Case of Edge Labels from a Gen-

eral Dioid and a Associated Graph without Negative Cycles 68
10 Refining a Target Model via Quotient Construction 72
11 Computing the Optimal Value Function via the Coarsest Quotient . . 92
12 Successive Approximation . 94
13 Hoffman-Karp Algorithm . 95
14 Policy Improvement Algorithm for min-SSGs 95

Index

ℓ-successor, 14

adjacency matrix, 78
associated dioid, 55
atomic (element), 98
atomic (subset), 98
autobisimulation

for a model, 27
for a set-labelled graph, 19

average node, 86

bisimilar (model), 26
bisimilarity

of set-labelled graphs, 19
bisimulation

for set-labelled graphs, 19
bisimulation (model), 25
bisimulation (semiring), 119
bisimulation equivalence

for a model, 27
for a set-labelled graph, 19

bisimulation witness, 26

carrier function, 133
closure operation, 112
coarser (partition), 101
column vector, 77
complete dioid, 53
comprehensive bisimulation, 133
concatenation (of walks), 6
control objective, 37
controllable, 38

controllable predecessor, 38
controller, 36, 37
controller synthesis problem, 38
cost, 57
cost function, 55
cumulative dioid, 54
cycle, 6

defect target model, 56
diamond, 106
dioid, 53
distance, 57

edge, 6
edge length, 6
equivalence (semiring), 112
equivalence classes (semiring), 114
expansion

in a semiring, 125
of a quotient model, 32
of a vector, 79

feasible node labelling (SSG), 92
finite graph, 6
finitely labelled graph, 14

gluing, 6
graph, 6
greatest live part, 124, 135

idempotent semiring, 98
induced partition, 78

INDEX

infinite walk, 6
isomorphic (model), 22

label set, 14
label-optimised target model, 60
labelling function, 14
left-total, 6
live, 135
live element (semiring), 123
live part, 135
live part (semiring), 123

m-symmetric (semiring), 110
Mace4, 128
marker function, 125
matrix, 77
max node, 86
max-player, 86
max-strategy, 86
min node, 86
min-player, 86
min-SSG, 95
min-strategy, 86
mixed representation, 15
modal semiring, 106
model, 21
multiplication

in semirings, 98

natural order, 98
negative cycle, 67
node labelling function, 21
node switching, 93

optimal max-strategy, 86
optimal min-strategy, 86
optimal target submodel, 62
optimal walk, 57
optimality equations, 88
order (dioid), 54
out-labels, 14

partition, 5
partition (semiring), 100
partition refinement, 101
path, 6
plant automaton, 36
preimage, 6
preorder (semiring), 112
product (of matrix and vector), 78
Prover9, 128
pseudoconverse, 120

quotient, 27
quotient matrix, 79
quotient witness, 125

reachable, 6
refineability (target model), 64
refinement, 22

in a semiring, 125
refinement (model), 22
reflexive (semiring), 112
respect (partition), 103
respecting (of a partition by an autobisim-

ulation), 19
restriction, 5
right-total, 6
row vector, 77

s-dioid, 54
selective dioid, 54
semiring, 98
set of labellings, 14
set-labelled graph, 14
simple stochastic game, 85
sink node, 86
SOR, 125
stable node labelling (SSG), 92
stable partition, 20
stopping simple stochastic game, 86
subgraph, 6
submodel, 22

176

INDEX

sum
in semirings, 98
of vectors, 78

switchable node, 93
symmetric (semiring), 108

target distance, 57
target model, 55
target set, 55
Tarski rule, 108
test, 99
trace, 36
transitive (semiring), 112

uniquely labelled graph, 14
uniquely labelled model, 22

value (simple stochastic game), 86
vector, 78

walk, 6

177

Wenn zwei das Gleiche tun, ist es noch lange nicht

dasselbe.

German Proverb

Curriculum Vitae

Roland Glück
glueck@informatik.uni-augsburg.de

Date of Birth 25 August 1972
Citizenship German

Education
2007 Diploma in Computer Science (major) and

Mathematics (minor) at University of Augsburg
1991 - 1993 Study of Mathematics at University of Augsburg

1991 Abitur

Academic Positions
2007 - 2013 Researcher at University of Augsburg

Non-Academic Positions
2002 - 2007 Demonstrator at University of Augsburg

