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Abstract. In this short notice we give some ideas how to compute isolated
sublattices which can be used to derive a recursive algorithm for the com-
putation of the number of closure operators on a finite lattice. We give an
asymptoticaly optimal algorithm for deciding the existence and - in the
case of existence - the computation of useful nontrivial isolated summit
sublattices. The general case (i.e., an optimal algorithm for the computa-
tion of general nontrivial useful isolated sublattices) remains unsolved,
however, we try to give some ideas and hints for future research.

1 Motivation, Basic Definitions and Notation

Isolated Sublattices are used in [1] to derive a recursive algorithm for computing
thee number of closure operators by means of a quotient lattice. A crucial point
in this algorithm is the computation of an isolated sublattice. This can be done in
polynomial time as sketched at the end of [1], however, it would be desirable to
obtain a linear time algorithm. We will see in Subsection 2.1 that we can achieve
this for a special class of isolated sublattices. For the general case, we sketch
some ideas in Subsection 2.2.

Let us start with some definition and notational conventions.
For a lattice (S,≤), we denote its least and greatest element by ⊥ and⊤, resp.

We often use S as notation for a lattice instead of (S,≤). In a lattice, we define an
isolated sublattice as follows:

Definition 1.1. Let (S,≤) be a lattice. A subset S′ ⊆ S is called an isolated sublattice
if it fulfills the following properties:

1. S′ is a sublattice with greatest element ⊤S′ and least element ⊥S′ .
2. ∀x < S′∀y′ ∈ S′ : y′ ≤ x⇒ ⊤S′ ≤ x
3. ∀x < S′∀y′ ∈ S′ : x ≤ y′ ⇒ x ≤ ⊥S′

Clearly S is an isolated sublattice which we call trivial. Also, every singleton
subset of S is also an isolated sublattice, even though of little interest and use.
So we call an isolated sublattice with more than one element useful.

In [1] it is shown that an isolated sublattice always has the form [⊥S′ ,⊤S′ ],
i.e., it is an interval in S. If⊤S′ = ⊤ holds we speak of a summit isolated sublattice.
In particular, every summit isolated sublattice is of the form [z,⊤]. Moreover,
it is easy to check that both [⊥,⊤] and [⊤,⊤] are summit isolated sublattices.
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However, they are of no interest here because they do not lead to progress in
the algorithm from [1].

In order to make use of isolated sublattices we need an algorithm for com-
puting isolated sublattices in an finite lattice. Therefore, we assume that the
lattice is given by its Hasse diagram as a directed graph G = (S,E) where the
edges point ”upwards”. i.e., (u, v) ∈ E implies u < v. For the reverse graph of
G = (S,E) we use the notation G← = (S,E←) and for its undirected version we
write G↔.¸ Given a path p = v1v2 . . . vn we write v ∈ p if v = vi for some i ∈ [1, n]
and say that p contains v. We call a node u a (v,w)-separator if every path from
v to w contains u.

2 Connection with Separators

2.1 Summit Isolated Sublattices and Separators

First, we give an alternative characterization than Definition 1.1 that [z,⊤] is a
summit isolated sublattice. To this end, we observe that [z,⊤] is a lattice and
hence fulfills already the first condition of Definition 1.1. Next, we can omit the
second condition of this definition since the antecedent y′ ≤ x implies x ∈ [z,⊤]
due to x ≤ ⊤, contradicting the assupumtion x < S′ from the definition. So we
have the following lemma: ¸

Lemma 2.1. [z,⊤] is a summit isolated sublattice iff the following implication holds:

• ∀x < [z,⊤]∀y′ ∈ [z,⊤] : x ≤ y′ ⇒ x ≤ z.

Using this characterization, we can give a still simpler one:

Lemma 2.2. [z,⊤] is a summit isolated sublattice iff for all x < [z,⊤] the inequality
x ≤ z holds.

Proof: ”⇒”: Let us pick an arbitrary x < [z,⊤]. Clearly, we have x ≤ ⊤, and
the claim follows from the substitution y′ := ⊤ in Lemma 2.2.
”⇐”: Since x ≤ z holds by assumption for all x < [z,⊤] the consequent from
Lemma 2.2 is always true. �

After this characterization which is valid in arbitrary lattices we can give a
first version for finite lattices:

Lemma 2.3. Let (S,≤) be a finite lattice with Hasse diagram G = (S,E). Then every
summit isolated sublattice of S has the form [z,⊤] where z is a (⊤,⊥)-separator in G←.

Proof: As already mentioned in Section 1 every summit isolated sublattice
has the form [z,⊤] so it remains to show the condition concerning the separation
property of z. We omit thee trivial and uninteresting cases z = ⊥ and z = ⊤ and
consider a path p = v1v2 . . . vn in G← with v1 = ⊤ and vn = ⊥. Then there is an
index i ∈ [1, n − 1] with vi ∈ [z,⊤] and vi+1 < [z,⊤] and let us assume for the
sake of contradiction that vi , z holds. Due to vi ∈ [z,⊤] this implies z < vi

and the property (vi, vi+1) ∈ E← implies vi+1 < vi. On the other hand, Lemma 2.2
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implies vi+1 < z. Alltogether, we have z < vi and vi+1 < z. But then vi+1 < vi

follows already by transitivity of <, hence (vi+1, vi) can not be an edge in the
Hasse diagram of S and now (vi, vi+1) < E← contradicts the path property of p.�

Problems like separators in directed graphs can be tackled by modified max-
flow algorithms which are in general somehow cumbersome to implement.
Luckily, there is a characterization using undirected graphs:

Theorem 2.4. Let (S,≤) be a finite lattice with Hasse diagram G = (V,E). Then every
summit isolated sublattice of S has the form [z,⊤] where z is a (⊤,⊥)-separator in G↔.

Proof: The claim is obvious for the case z ∈ {⊥,⊤} so let us assume that
z < {⊥,⊤} holds and let us fix an arbitrary path p = v1v2 . . . vn in G↔ with v1 = ⊤

and vn = ⊥. Analogously to the proof of Lemma 2.3 there are vertices vi and vi+1

with vi ∈ [z,⊤] and vi+1 < [z,⊤], and here, too, we claim that vi = z holds. Due
to vi ∈ [z,⊤] and vi+1 < [z,⊤] we have (vi, vi+1) ∈ E←. On the other hand, from
vi ∈ [z,⊤] we conclude that there is a path p′ = v′

1
v′2 . . . v

′
n′ in G← with v′

1
= ⊤,

v′n′ = vi and v′
i′
, z for all i′ ∈ [1, n′]. Analogously, there is a path p′′ = v′′

1
v′′

2
. . .v′′n′′

in G← with v′′
1
= vi+1, v′′n′′ = ⊥ and v′′

i′′
, z for all i′′ ∈ [1, n′′]. This means that

v′
1
v′2 . . . v

′
n′v
′′
1

v′′2 . . . v
′′
n′′ is a path in G← from ⊤ to ⊥, and the claim follows from

Lemma 2.3. �

Using a result from [2] this leads to the following corollary:

Corollary 2.5. Given the Hasse diagram (S,E) of a finite lattice S, it can be determined
in O(|E|) time whether S has a nontrivial useful summit isolated sublattice. In the case
of existence, a nontrivial useful summit isolated sublattice can be determined also in
O(|E|) time.

Clearly, this time bound is asymptoticaly optimal. Note that [2] uses only a
simple DFS and does not rely on some sophisticated network flow algorithms.
Moreover, we can determine (in the case of existence) an inclusion-maximal
nontrivial useful summit isolated sublattice in time linear in |E|.

2.2 General Isolated Sublattices and Separators

An approach similar to above leads to the following lemma in the general case:

Lemma 2.6. Let (S,≤) be a finite lattice with Hasse diagram G = (S,E). Then all
isolated sublattices of S are exactly the intervals [x, y] where x is a (y,⊥)-separator in
G← and y is an (x,⊤)-separator in G.

Compared to the computation of summit isolated sublattices we face a much
more adversary situation if we want to compute general isolated sublattices.
First, we now nothing about the top element of such an isolated sublattices (in a
summit isolated sublattice the top element is always the greatest element of the
lattice itself). Second, there may be a superlinear number of general sublattices:

A chain of length n has
n(n−1)

2 − 1 nontrivial useful isolated sublattices (a linear
amount of them, namely n − 1, are summit isolated sublattices). This seems
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to make it impossible to come up with a linear time algorithm as in the case
of summit isolated sublattices. However, we are not interested in all isolated
sublattices but only in inclusion-maximal ones. Since distinct inclusion-maximal
isolated sublattices are disjoint (see [1]) there at most |S| of them. Moreover, we

even do not need to know all incĺusion-maximal isolated sublattices but are
satisfied with some inclusion-maximal useful nontrivial isolated sublattice. This
makes hope for a linear time algorithm, however, some clever ideas seem to be
necessary. In the sequel we list some observations we may help in this direction.

Transitivity of the Separator Property. If v2 is a (v1, v)-separator and v3 is a
(v2, v)-separator then v3 is a (v1, v)-separator. This reflects the fact that for isolated
sublattices [v, v1] and [v, v2] the greatest elements v1 and v2 are comparable
(see [1]).

Supremum/Infimum Property of Lattices. The ideas presented so far do
not fully exploit the properties of a lattice but rely only on those of a finite order
possessing a least and a greatest element. Is it possible to take advantage of
the existence of suprema/infima, e.g., that for pairwaise distinct v1, v2, v3 and v4

the existence of the edges (v1, v3) and (v2, v3) excludes the existence of the edge
(v1, v4) (and similar properties for paths)?

3 Summary and Discussion

This fragmentary note shows that summit isolated sublattices can be computed
in linear but leaves the question open for the general case. We hope that this
stimulates further research towards the computation of isolated sublattices.
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