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Motivation for Counting

e [BonzioPrabaldiValota2018] count bisemilattices
e [Alpaylipsen2020] count doubly idempotent semirings

[QuinteroRamirezRuedaValencia2020] count join-endomorphisms
e [BerghammerBormWinter2021] count topological spaces
[AlpaylipsenSugimoto2021] count dé-structures
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Motivation for Closures

transitive closure of relations or graphs

Kleene closure in language theory

connected components in [Glick2017]

most work deals with powerset lattices (Moore families)

number of closure operators on (P(S), C) known only up to [S| =7
[ColomblrlandeRaynaud2010]

shown to be 14.087.648.235.707.352.472 [ColomblrlandeRaynaud2010]
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Closures

Given an ordered set S an endofunction c on S is called a closure operator if it fulfills the
following properties for all x, y € S:

o x < c(x) (extensitivity)
ex <y=c(x) <cy) (isotony)
e c(c(x)) = c(x) (idempotence)
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Closures

Given an ordered set S an endofunction c on S is called a closure operator if it fulfills the
following properties for all x, y € S:

o x < c(x) (extensitivity)

ex <y=c(x) <cy) (isotony)

o c(c(x)) = c(x) (idempotence)
Given a lattice (S, <) a subset S' C S is called a closure system if it fulfills the following
properties:

ex,yeS =>xnyes
e for every s € S there is a smallest x € S’ such that s < x holds.

The set of all closure systems of S is denoted by C(S).

Remark: The second condition implies the first one.
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Closures

Given an ordered set S an endofunction c on S is called a closure operator if it fulfills the
following properties for all x, y € S:

o x < c(x) (extensitivity)

ex <y=c(x) <cy) (isotony)

o c(c(x)) = c(x) (idempotence)
Given a lattice (S, <) a subset S' C S is called a closure system if it fulfills the following
properties:

ex,yeS =>xnyes
e for every s € S there is a smallest x € S’ such that s < x holds.

The set of all closure systems of S is denoted by C(S).

Remark: The second condition implies the first one.
These two definitions are cryptomorphic.

DLR
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Example Lattice
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No Closure Example
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Closure Example
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Counting Closures

e In general, counting closures is difficult:

IC(P({1.2.3,4,5,6,7}). C)| = 14.087.648.235.707.352.472 known since 2010.
e T (if exists) is element of every closure system

e Easy special cases:

C({1...n} Q) =20

|[C(diam(n))| =2+2n+ (2" —n—1)
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Finding Substructures

closure system

almost
closure system
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Isolated Sublattices and Congruences

Definition
Let (S, <) be a lattice. A subset S' C S is called an isolated sublattice if it fulfills the
following properties:

e S’ is a sublattice with greatest element T and least element Lg.
o VX ¢SV eSSy <x=Tg<x
oVx g SV €S i x<y =>x< Lg

Remark: S and {s} fors € S are isolated sublattices.

Lemma

Let §' be an isolated sublattice and define =g by X =g y Sgef X =y V(X ES' Ay € S).
Then =g is a congruence relation on (S, <).

Reminder: An equivalence relation = is a congruence if the following holds:

eX0 = Yo AX1 =y = Xo X1 = Yo My and
X0 =YoAX1 =Yy = XoUX1 =yo Uy
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More about Congruences

e A congruence = on a lattice (S, <) induces a quotient lattice (S/=, < /=)
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More about Congruences

e A congruence = on a lattice (S, <) induces a quotient lattice (S/=, < /=)
e S/=is a homomorphic image of S
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More about Congruences

e A congruence = on a lattice (S, <) induces a quotient lattice (S/=, < /=)
e S/=is a homomorphic image of S
e Are there relations between closure systems of S and closure systems of S/=¢?
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More about Congruences

e A congruence = on a lattice (S, <) induces a quotient lattice (S/=, < /=)

e S/=is a homomorphic image of S

e Are there relations between closure systems of S and closure systems of S/=¢?
e Yes, there are!
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Various Kinds of Isolated Sublattices

Let (S, <) be a lattice with greatest element T.

An isolated sublattice S’ of S is called a summit isolated sublattice if T¢x = T holds.

An isolated sublattice S" of S is called an isolated sublattice with bottleneck if T is
meet-irreducible.

Definition
A subset § C S'is called a preclosure system if S U {T} is a closure system. The set of all
preclosure systems is denoted by PC(S).

Remark: Note that [PC(S)| = 2 - |C(S)] holds.
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Examples

summit isolated sublattice

preclosure system on

an isolated sublattice
with bottleneck
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Closure Systems and Isolated Sublattices
Notation: Cl} = {{c}|c € C}

Lemma

Let (S, <) be a lattice, S an isolated sublattice of (S, <) and consider a closure system C
of (S, <).

e /fCNS =@ then C1} s a closure system of S/=g.
e IfCNS #0then (C\S') U {S'} is a closure system of S/=g.
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Closure Systems and Isolated Sublattices

Notation: Cl} = {{c}|c € C}

Lemma

Let (S, <) be a lattice, S an isolated sublattice of (S, <) and consider a closure system C
of (S, <).

e /fCNS =@ then C1} s a closure system of S/=g.
e IfCNS #0then (C\S') U {S'} is a closure system of S/=g.

Lemma

Let (S, <) be a lattice and S' an isolated sublattice with bottleneck. Assume that Cs is a
preclosure system of S' and let C' be a closure system of S/=¢ with S' € C'. Then
C =ger U(C'\{S'}) U Cs is a closure system of (S, <).
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Closure Systems and Isolated Sublattices

DLR

o

Notation: Cl} = {{c}|c € C}

Lemma

Let (S, <) be a lattice, S an isolated sublattice of (S, <) and consider a closure system C
of (S, <).

e /fCNS =@ then C1} s a closure system of S/=g.
e IfCNS #0then (C\S') U {S'} is a closure system of S/=g.

Lemma

Let (S, <) be a lattice and S' an isolated sublattice with bottleneck. Assume that Cs is a
preclosure system of S' and let C' be a closure system of S/=¢ with S' € C'. Then
C =ger U(C'\{S'}) U Cs is a closure system of (S, <).

Lemma

Let (S, <) be a lattice and S' a summit isolated sublattice of S. Assume that Cs is a
closure system of S' and let C' be a closure system of S/=g. Then C =40 U C'\S' U Cg is
a closure system of (S, <).

Remark: Note that Ts/=, € C"and Ts € Cy hold.

= = 9DQe
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Illustration
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lHlustration
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Illustration



http://www.dlr.de

dir.de - Slide 17 of 25 > Isolated Sublattices and Closures > Roland Gliick > Marseille/Luminy, 3rd November 2021

lHlustration
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Necessity of Bottlenecks
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Closure Systems and Isolated Sublattices

Lemma

Let S be a lattice and S' an isolated sublattice with bottleneck of S and assume that C' is a
closure system on S/=g with S' ¢ C'. Then |J C' is a closure system on S.
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Closure Systems and Isolated Sublattices

Lemma

Let S be a lattice and S' an isolated sublattice with bottleneck of S and assume that C' is a
closure system on S/=g with S' ¢ C'. Then |J C' is a closure system on S.

Theorem
Let S' be an isolated sublattice with bottleneck of (S, <), and consider a set C C S.

o Assume that C" =g CNS' # 0 holds. Then C is a closure system of S iff C' is a
nonempty preclosure system of S' and (C\S')1} U {S'} is a closure system of S/=g.

e Assume that CN'S' = () holds. Then C is a closure system of S iff C1} is a closure
system of S/=q.
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Closure Systems and Isolated Sublattices

Lemma

Let S be a lattice and S' an isolated sublattice with bottleneck of S and assume that C' is a
closure system on S/=¢ with S' ¢ C'. Then |J C' is a closure system on S.

Theorem
Let S' be an isolated sublattice with bottleneck of (S, <), and consider a set C C S.

o Assume that C" =g CNS' # 0 holds. Then C is a closure system of S iff C' is a
nonempty preclosure system of S' and (C\S')1} U {S'} is a closure system of S/=g.

e Assume that CN'S' = () holds. Then C is a closure system of S iff C1} is a closure
system of S/=q.

Theorem

Let S" be a summit isolated sublattice of a lattice (S, <), and consider a set C C S. Then C
is a closure system of S iff C N S' is a closure system of ' and (C\S"){} U {S'} is a closure
system of S/=g.
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Towards a Recursive Counting Algorithm

Let §', T C S be subsets of a lattice S and x € S. Then we define:

. C(S)T =ger {CEC(S)|T C C}
C(S)x1 =der {C € C(S)T|x ¢ C}

. C(S)T =def {Cec(S)rIcns #0}

e C(9)7Y =ger {CECS)rICNS =0}

This implies:

. C(S) = C(S)m

* C(r =CS)n\iTsy = C(Sru(TeY

. C(S)T = C(S)TU{X} UC(S),XYT, hence

o [C(S)7| = C(S)rupg| +1C(S) 7]

« analogously [C(S)r| = [C(S)Y | + C(S)7” |

Formulae for the cardinalities in the case of chains or diamonds can easily be obtained.
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Recursion for Isolated Sublattices with Bottleneck

Let § be an isolated sublattice with bottleneck and consider an arbitrary set T C S with
TNS =0. Then:

(N IO | = 1€(5/=s)rt0gm |- (IPEE) = 1)
(discard tbe empty preclosure)

) 1C(9)7° | = 1C(S/=5)_(51y rr]

) C(S/=5 )10l = 1C(S/=s ) ruugsn | +1C(5/=s) sy 700

(@) IPc(s) =2-1c(5)] ,

(5) Ie(S)r] = Ie(S)3 | + e(S)7 |, hence:

(6) 1C(S)r] = 1C(5/=5)r00gq5y3] - 21E(S) = 1) + C(5/=5) 0|
(insert (1), (2), (3) and (4) into (5) and simplify)
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Recursion for Summit Isolated Sublattices and Maximality

Analogously for a summit isolated sublattice with TN S = :

o [CO)r = C(S/=s)rnr |- 1C(S)]
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Recursion for Summit Isolated Sublattices and Maximality

Analogously for a summit isolated sublattice with TN S = :
e lC(S)rl=1C(S/=s)rn |- 1C(S)]

e For a recursive algorithm we have to ensure that TN S" = 0 holds.
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Recursion for Summit Isolated Sublattices and Maximality

Analogously for a summit isolated sublattice with TN S = :
e lC(S)rl=1C(S/=s)rn |- 1C(S)]

e For a recursive algorithm we have to ensure that TN S" = 0 holds.
e This can be achieved by using inclusion-maximal nontrivial isolated sublattices.
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Recursion for Summit Isolated Sublattices and Maximality

Analogously for a summit isolated sublattice with TN S = :

o [CO)r = C(S/=s)rnr |- 1C(S)]

e For a recursive algorithm we have to ensure that TN S" = 0 holds.

e This can be achieved by using inclusion-maximal nontrivial isolated sublattices.

e Inclusion-maximal isolated sublattices are disjoint and can not contain quotients from
earlier isolated sublattices (if only inclusion-maximal isolated sublattices are used).
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Recursion for Summit Isolated Sublattices and Maximality

Analogously for a summit isolated sublattice with TN S = :

o [CO)r = C(S/=s)rnr |- 1C(S)]

e For a recursive algorithm we have to ensure that TN S" = 0 holds.

e This can be achieved by using inclusion-maximal nontrivial isolated sublattices.

e Inclusion-maximal isolated sublattices are disjoint and can not contain quotients from
earlier isolated sublattices (if only inclusion-maximal isolated sublattices are used).

e If possible, use a summit isolated sublattice.
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Recursive Algorithm

function #cLosuRres(lattice S, set T)
if S is a special case (chain, diamond) then
return the respective number
end if
if S has a nontrivial useful summit isolated sublattice then
S’ < the inclusion maximal summit sublattice
return #CLOSURES(S /=g, T1})-#CLOSURES(S, )
end if
if S has a useful isolated sublattice with bottleneck then
S’ < an inclusion maximal useful isolated sublattice with bottleneck
return
#CLOSURES(S/=g, T U {S"1}})-2(#CLOSURES(S', 0)-1)+#CLOSURES(S /=g, T{})
end if
compute and return |C(S)7]| by some brute force algorithm
end function
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Running Time Considerations

e In general, there are exponenially many closure systems

e Brute force algorithms may take also exponential time

e Speed-up expectable if computation of isolated sublattices can be done in polynomial
time

e See short talk on Friday
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Future Work

Open issues:

o |dentify other special lattices S with simple formulae for the cardinality of C(S)

e More general structures than isolated sublattices with similar suitable properties?
e Implementation and evaluation

e Similar ideas for general orders?

e Applicable to counting monads on categories?
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