Compatibility of Refining and Controlling Plant Automata with Bisimulation Quotients

Roland Glück ${ }^{1}$
${ }^{1}$ Center for Lightweight Production Technology German Aerospace Center

20th International Conference on Relational and Algebraic Methods Computer Science
Augsburg, April 3rd, 2023

- Bisimulations known as tool in model checking
- Properties can be checked on bisimilar (possibly smaller) models
- Here application of bisimulations to model refinement
- Restriction to LTL formulae
- shrink - refine - expand
- possible speed-up
- possible taming of infinite systems

Definition of Plant Automata

Definition

A model is a tuple $M=(V, E, g, a)$ such that

- (V, E) is a directed graph,
- $g: E \rightarrow 2^{\Sigma}$ is the edge labelling function and
- $a: V \rightarrow 2^{\Pi}$ is the node labelling function.
- Π and Σ are disjoint alphabets.

A plant automaton has a unique $v_{0} \in V$ with $\mathbf{I} \in a(v) \Leftrightarrow v=v_{0}$.

- Models correspond to labelled transition systems.
- v_{0} has the role of a starting node.

Refinement

Writing convention: $(v, \alpha, w) \in E \Leftrightarrow{ }_{d f} \alpha \in g(v, w)$
Definition
A model $M^{\prime}=\left(V^{\prime}, E^{\prime}, g^{\prime}, a^{\prime}\right)$ is called a refinement of a model $M=(V, E, g, a)$ if the following conditions hold:

- $V^{\prime}=V$
- $(v, \alpha, w) \in E^{\prime} \Rightarrow(v, \alpha, w) \in E$
- $a^{\prime}(v)=a(v)$
- Refinement changes behavior of a model.
- Refinement keeps node set.
- Every present transition can be disabled or kept.

Controller

Definition

Given a model $M=(V, E, g, a)$ a controller of M is a mapping $c: V \rightarrow 2^{\Sigma}$ such that for all $v \in V$ the inclusion $c(v) \subseteq\{\alpha \mid \exists w:(v, \alpha, w) \in E\}$ holds. The model $M \mid c={ }_{d f}(V|c, E| c, g|c, a| c)$, also called M controlled by c, is defined as follows:

- $V \mid c={ }_{d f} V$
- $(v, \alpha, w) \in E \mid c \Leftrightarrow_{d f}(v, \alpha, w) \in E \wedge \alpha \in c(v)$
- $(a \mid c)(v)={ }_{d f} a(v)$
- Controller can be used to change a model's behavior.
- Allows only disabling of groups of transitions with common edge label.

Runs, Traces and LTL Properties

Definition

A run r is a finite or infinite sequence from $V(\Sigma V)^{*} \cup V(\Sigma V)^{\omega}$ such that $\left(v_{i}, \alpha, v_{i+1}\right) \in E$ holds for all subsequences of r from $V \Sigma V$. A run is called a trace if it starts with v_{0} (the unique node with $\mathbf{I} \in a\left(v_{0}\right)$). A plant automaton M is called live if it has at least one trace and for every finite trace $v_{0} \alpha_{0} v_{1} \alpha_{1} v_{2} \alpha_{2} v_{3} \ldots v_{i}$ of M there exist an $\alpha_{i} \in \Sigma$ and a $v_{i+1} \in V$ such that $\left(v_{i}, \alpha_{i}, v_{i+1}\right) \in E$ holds.
A plant automaton satisfies an LTL formula φ if it is live and every trace fulfills φ.

Refineability and Controllability

Definition

A plant automaton M is refineable with respect to an LTL formula φ if there is a refinement M^{\prime} of M such that M^{\prime} satisfies φ. It is controllable with respect to φ if there is a contoller c such that $M \mid c$ satisfies φ.
Goals:

- deciding refineabiliy/controllability
- computing an actual refinement/controller

Example Plant Automaton

Refinement

Another Plant Automaton

Another Plant Automaton, controlled

Runs, Traces and LTL formulae

- Run: $r=v_{1} \beta v_{2} \alpha w_{1}$
- Trace: $t=v_{0} \alpha v_{1} \alpha w_{1}\left(\alpha w_{2}\right)^{\omega}$
- t fulfills ΔF
- even plant automaton satisfies ΔF

NP-hardness

Theorem
In general, it is NP-hard to decide whether a plant automaton is refineable (controllable) with respect to an LTL formula.
Proof:

- reduction from directed Hamilton cycle
- given $G=(V, E)$, pick an arbitrary $v_{0} \in V$
- label all edges with a unique label
- set $a\left(v_{0}\right)=\mathrm{I}$ and $a(v)=\mathrm{F}$ for $v \neq v_{0}$
- $\varphi=d_{d f}\left(\bigwedge_{i=1}^{|V|-1} \bigcirc^{i} \mathrm{~F}\right) \wedge \bigcirc^{|V|_{I}}$

Bisimulations

Definition

Given two models $M=(V, E, g, a)$ and $\hat{M}=(\hat{V}, \hat{E}, \hat{g}, \hat{a})$ we call a relation $B \subseteq V \times \hat{V}$ a bisimulation between M and \hat{M} if B is both left and right total and fulfills the following conditions:

- $(v, \hat{v}) \in B \Rightarrow a(v)=\hat{a}(\hat{v})$
- $(v, \alpha, w) \in E \wedge(v, \hat{v}) \in B \Rightarrow \exists \hat{w} \in \hat{V}:(w, \hat{w}) \in B \wedge$ $(\hat{v}, \alpha, \hat{w}) \in \hat{E}$
- $(\hat{v}, \alpha, \hat{w}) \in \hat{E} \wedge(v, \hat{v}) \in B \Rightarrow \exists w \in V:(w, \hat{w}) \in B \wedge$ $(v, \alpha, w) \in E$
- Autobisimulation: bisimulation between M and itself
- Bisimulation equivalence: autobisimulation + equivalence
- Existence of a coarsest bisimulation equivalence

Quotients

Definition

Let B be a bisimulation equivalence for $M=(V, E, g, a)$. The quotient M / B is the model $(V / B, E / B, g / B, a / B)$, defined as follows:

- $V / B={ }_{d f}\{v / B \mid v \in V\}$
- $(v / B, \alpha, w / B) \in E / B \Leftrightarrow_{d f} \exists v^{\prime} \in v / B, w^{\prime} \in v / B$: $\left(v^{\prime}, \alpha, w^{\prime}\right) \in E$
- $(a / B)(v / B)={ }_{d f} a(v)$

Expansion

Definition

Given a model $M=(V, E, g, a)$, a bisimulation equivalence B for M and a refinement $(M / B)^{\prime}=\left((V / B)^{\prime},(E / B)^{\prime},(g / B)^{\prime},(a / B)^{\prime}\right)$ of M / B we define the expansion
$(M / B)^{\prime} \backslash B=\left((V / B)^{\prime} \backslash B,(E / B)^{\prime} \backslash B,(g / B)^{\prime} \backslash B,(a / B)^{\prime} \backslash B\right)$ as follows:

- $(V / B)^{\prime} \backslash B=V$
- $(v, \alpha, w) \in(E / B)^{\prime} \backslash B \Leftrightarrow(v, \alpha, w) \in E \wedge(v / B, \alpha, w / B) \in$ $(E / B)^{\prime}$
- $\left((a / B)^{\prime} \backslash B\right)(v)=a(v)$

Quotient

Expansion

Compatibility

Definition

Let φ be an LTL formula. We say that φ is quotient compatible with respect to refinement (control) if for all plant automata M and all bisimulation quotients M / B of M the equivalence
M is refineable (controllable) wrt. $\varphi \Leftrightarrow$
M / B is refineable (controllable) wrt. φ
holds.
Refineability of M / B implies refineability of M by bisimilarity of $(M / B)^{\prime}$ and $(M / B)^{\prime} \backslash B$, analogously for controllability

Simple Case: F

Lemma

F is quotient compatible with respect to refinement.
Proof:

- consider refinement M^{\prime} satisfying F
- pick arbitrary infinite trace $p=v_{0} \alpha_{0} v_{1} \alpha_{1} \ldots$ in M^{\prime}
- define $(M / B)^{\prime}$ by:
- $(V / B)^{\prime}={ }_{d f} V / B$
- $(a / B)^{\prime}={ }_{d f} a / B$
- $(v / B, \alpha, w / B) \in(E / B)^{\prime} \Leftrightarrow{ }_{d f} \exists i: v \in v_{i} / B \wedge w \in$ $v_{i+1} / B \wedge \alpha=\alpha_{i}$
- check properties (refinement, liveness, satisfaction)

Some More Interesting Cases

Lemma

$\bigcirc \mathrm{F}$ is quotient compatible with respect to refinement.
Proof: similar to the previous case, $v_{0} / B=\left\{v_{0}\right\}$ makes live easy
Lemma
$\bigcirc \bigcirc \mathrm{F}$ is quotient compatible with respect to refinement.
Proof: inconvenient, tedious case distinctions ($v_{0}=v_{2}$,
$\left.v_{1} / B=v_{2} / B, \ldots\right)$
Lemma
$\bigcirc \bigcirc \mathrm{F}$ is not quotient compatible with respect to refinement.

Refining for $\bigcirc \bigcirc \bigcirc F$

Refining for $\bigcirc \bigcirc \bigcirc F$

Two other examples

Lemma

FUG is quotient compatible with respect to refinement.
Proof: consider trace in M, mind to remove cycles in the quotient Lemma
$\bigcirc^{i} \square \mathrm{~F}$ is quotient compatible with respect to refinement.
Proof: similar to above, premature arrival at F doesn't hurt

Decidability and Computation

Ideas:

- look for deterministic refinements
- liveness has to be ensured
- use strongly connected components (SCC)
- every trace has to be trapped in an SCC (in the finite case)

Example with Proofs

Lemma

It can be decided in $\mathcal{O}(|V|+|E|)$ time whether M can be refined with respect to F . A corresponding refinement can also be computed in $\mathcal{O}(|V|+|E|)$ time.
Proof: test whether $\mathrm{F} \in a\left(v_{0}\right)$ holds and whether an SCC is reachable from v_{0}

Lemma

It can be decided in $\mathcal{O}(|V|+|E|)$ time whether M can be refined with respect to $\bigcirc F$. A corresponding refinement can also be computed in $\mathcal{O}(|V|+|E|)$ time.
Proof:

- $\mathrm{F} \in a\left(v_{0}\right)$ and $\left(v_{0}, v_{0}\right) \in E$ is obvious
- remove loop from v_{0} and all edges $\left(v_{0}, v_{i}\right)$ with $\mathrm{F} \notin a\left(v_{i}\right)$
- look for reachable SCCs in the emerging graph

Examples without Proofs

Lemma

For every formula φ of the following list it can be decided in $\mathcal{O}(|V|+|E|)$ time whether M can be refined with respect to φ. A corresponding refinement can also be computed in $\mathcal{O}(|V|+|E|)$ time.
$-\bigcirc \bigcirc F$

- $\mathrm{O}^{i} \square \mathrm{~F}$ for every i
- $\diamond F$ and $\square F$
- $\diamond \square \mathrm{F}$ and $\square \diamond \mathrm{F}$
- FUG

Running time and Controllers

- all examples till now have linear running time
- computation of coarsest quotient needs $\mathcal{O}(|E|+\log (|V|))$ time
- no speed-up using quotients for refinement (in considered cases)
- similar results for control
- also here dichotomy between $\bigcirc \bigcirc F$ and $\bigcirc \bigcirc \bigcirc F$
- controlling with respect to $\Delta \mathrm{F}$ and $\square \mathrm{F}$ in $\mathcal{O}\left(|V|^{2}\right)$ time
- controlling with respect to $\diamond \square \mathrm{F}$ and $\square \diamond \mathrm{F}$ in $\mathcal{O}\left(|V|^{3}\right)$ time
- speed-up possible

Outlook and Further Research

- exact complexity of refinement (model checking is PSPACE-complete)
- consider more complex formulae (more variables)
- general criterion for compatibility
- explain gap between $\bigcirc \bigcirc F$ and $\bigcirc \bigcirc \bigcirc F$
- search for general/optimal refining/controlling algorithms

Questions

Questions?

