Compatibility of Refining and Controlling Plant Automata with Bisimulation Quotients

Roland Glück¹

¹Center for Lightweight Production Technology German Aerospace Center

20th International Conference on Relational and Algebraic Methods Computer Science Augsburg, April 3rd, 2023

- Bisimulations known as tool in model checking
- Properties can be checked on bisimilar (possibly smaller) models
- Here application of bisimulations to model refinement
- Restriction to LTL formulae
- shrink refine expand
- possible speed-up
- possible taming of infinite systems

Definition of Plant Automata

Definition

A model is a tuple M = (V, E, g, a) such that

- (V, E) is a directed graph,
- $g: E
 ightarrow 2^{\Sigma}$ is the *edge labelling* function and
- $a: V \to 2^{\Pi}$ is the *node labelling* function.
- Π and Σ are disjoint alphabets.

A plant automaton has a unique $v_0 \in V$ with $I \in a(v) \Leftrightarrow v = v_0$.

- Models correspond to labelled transition systems.
- v_0 has the role of a starting node.

Refinement

Writing convention: $(v, \alpha, w) \in E \Leftrightarrow_{df} \alpha \in g(v, w)$

Definition

A model M' = (V', E', g', a') is called a *refinement* of a model M = (V, E, g, a) if the following conditions hold:

$$\blacktriangleright$$
 $V' = V$

$$\blacktriangleright (\mathbf{v}, \alpha, \mathbf{w}) \in \mathbf{E}' \Rightarrow (\mathbf{v}, \alpha, \mathbf{w}) \in \mathbf{E}$$

$$\blacktriangleright a'(v) = a(v)$$

- Refinement changes behavior of a model.
- Refinement keeps node set.
- Every present transition can be disabled or kept.

Controller

Definition

Given a model M = (V, E, g, a) a controller of M is a mapping $c : V \to 2^{\Sigma}$ such that for all $v \in V$ the inclusion $c(v) \subseteq \{\alpha \mid \exists w : (v, \alpha, w) \in E\}$ holds. The model $M \mid c =_{df} (V \mid c, E \mid c, g \mid c, a \mid c)$, also called M controlled by c, is defined as follows:

- V|c =_{df} V
 (v, α, w) ∈ E|c ⇔_{df} (v, α, w) ∈ E ∧ α ∈ c(v)
 (a|c)(v) =_{df} a(v)
 - Controller can be used to change a model's behavior.
 - Allows only disabling of groups of transitions with common edge label.

Definition

A run r is a finite or infinite sequence from $V(\Sigma V)^* \cup V(\Sigma V)^{\omega}$ such that $(v_i, \alpha, v_{i+1}) \in E$ holds for all subsequences of r from $V\Sigma V$. A run is called a *trace* if it starts with v_0 (the unique node with $l \in a(v_0)$). A plant automaton M is called *live* if it has at least one trace and for every finite trace $v_0\alpha_0v_1\alpha_1v_2\alpha_2v_3\ldots v_i$ of M there exist an $\alpha_i \in \Sigma$ and a $v_{i+1} \in V$ such that $(v_i, \alpha_i, v_{i+1}) \in E$ holds.

A plant automaton satisfies an LTL formula φ if it is live and every trace fulfills $\varphi.$

Definition

A plant automaton M is *refineable* with respect to an LTL formula φ if there is a refinement M' of M such that M' satisfies φ . It is *controllable* with respect to φ if there is a contoller c such that M|c satisfies φ .

Goals:

- deciding refineabiliy/controllability
- computing an actual refinement/controller

Example Plant Automaton

Refinement

Another Plant Automaton

Another Plant Automaton, controlled

Runs, Traces and LTL formulae

$$\blacktriangleright \text{ Run: } r = v_1 \beta v_2 \alpha w_1$$

• Trace:
$$t = v_0 \alpha v_1 \alpha w_1 (\alpha w_2)^{\omega}$$

► t fulfills ◊F

even plant automaton satisfies

NP-hardness

Theorem

In general, it is NP-hard to decide whether a plant automaton is refineable (controllable) with respect to an LTL formula. Proof:

reduction from directed Hamilton cycle

• given
$$G = (V, E)$$
, pick an arbitrary $v_0 \in V$

Bisimulations

Definition

Given two models M = (V, E, g, a) and $\hat{M} = (\hat{V}, \hat{E}, \hat{g}, \hat{a})$ we call a relation $B \subseteq V \times \hat{V}$ a *bisimulation* between M and \hat{M} if B is both left and right total and fulfills the following conditions:

$$(\hat{v}, \alpha, \hat{w}) \in \hat{E} \land (v, \hat{v}) \in B \Rightarrow \exists w \in V : (w, \hat{w}) \in B \land (v, \alpha, w) \in E$$

- Autobisimulation: bisimulation between *M* and itself
- Bisimulation equivalence: autobisimulation + equivalence
- Existence of a coarsest bisimulation equivalence

Quotients

Definition

Let B be a bisimulation equivalence for M = (V, E, g, a). The *quotient* M/B is the model (V/B, E/B, g/B, a/B), defined as follows:

Expansion

Definition

Given a model M = (V, E, g, a), a bisimulation equivalence B for M and a refinement (M/B)' = ((V/B)', (E/B)', (g/B)', (a/B)') of M/B we define the expansion $(M/B)' \setminus B = ((V/B)' \setminus B, (E/B)' \setminus B, (g/B)' \setminus B, (a/B)' \setminus B)$ as follows:

•
$$(V/B)' \setminus B = V$$

► $(v, \alpha, w) \in (E/B)' \setminus B \Leftrightarrow (v, \alpha, w) \in E \land (v/B, \alpha, w/B) \in (E/B)'$

 $\blacktriangleright ((a/B)' \backslash B)(v) = a(v)$

Quotient

 α

 w_2

Expansion

Compatibility

Definition

Let φ be an LTL formula. We say that φ is *quotient compatible* with respect to refinement (control) if for all plant automata Mand all bisimulation quotients M/B of M the equivalence

M is refineable (controllable) wrt. $\varphi \Leftrightarrow M/B$ is refineable (controllable) wrt. φ

holds.

Refineability of M/B implies refineability of M by bisimilarity of (M/B)' and $(M/B)' \setminus B$, analogously for controllability

Simple Case: F

Lemma

F is quotient compatible with respect to refinement.

Proof:

- consider refinement M' satisfying F
- pick arbitrary infinite trace $p = v_0 \alpha_0 v_1 \alpha_1 \dots$ in M'
- ► define (M/B)' by:

$$(V/B)' =_{df} V/B$$

- $\blacktriangleright (a/B)' =_{df} a/B$
- ► $(v/B, \alpha, w/B) \in (E/B)' \Leftrightarrow_{df} \exists i : v \in v_i/B \land w \in v_{i+1}/B \land \alpha = \alpha_i$

check properties (refinement, liveness, satisfaction)

Lemma

 $\bigcirc F$ is quotient compatible with respect to refinement.

Proof: similar to the previous case, $v_0/B = \{v_0\}$ makes live easy

Lemma

 $\bigcirc \bigcirc F$ is quotient compatible with respect to refinement. Proof: inconvenient, tedious case distinctions ($v_0 = v_2$, $v_1/B = v_2/B$, ...)

Lemma

 $\bigcirc \bigcirc \bigcirc F$ is not quotient compatible with respect to refinement.

Refining for $\bigcirc \bigcirc \mathsf{F}$

 α

 w_2

 α

Refining for $\bigcirc \bigcirc \mathsf{F}$

Lemma

FUG is quotient compatible with respect to refinement.

Proof: consider trace in M, mind to remove cycles in the quotient

Lemma

 $\bigcirc^{i}\Box F$ is quotient compatible with respect to refinement.

Proof: similar to above, premature arrival at F doesn't hurt

Decidability and Computation

ldeas:

- look for deterministic refinements
- liveness has to be ensured
- use strongly connected components (SCC)
- every trace has to be trapped in an SCC (in the finite case)

Example with Proofs

Lemma

It can be decided in O(|V| + |E|) time whether M can be refined with respect to F. A corresponding refinement can also be computed in O(|V| + |E|) time.

Proof: test whether $F \in a(v_0)$ holds and whether an SCC is reachable from v_0

Lemma

It can be decided in $\mathcal{O}(|V| + |E|)$ time whether M can be refined with respect to $\bigcirc F$. A corresponding refinement can also be computed in $\mathcal{O}(|V| + |E|)$ time.

Proof:

- $\mathsf{F} \in \mathsf{a}(v_0)$ and $(v_0, v_0) \in E$ is obvious
- ▶ remove loop from v_0 and all edges (v_0, v_i) with $F \notin a(v_i)$
- look for reachable SCCs in the emerging graph

Examples without Proofs

Lemma

For every formula φ of the following list it can be decided in $\mathcal{O}(|V| + |E|)$ time whether M can be refined with respect to φ . A corresponding refinement can also be computed in $\mathcal{O}(|V| + |E|)$ time.

- ► ○ F
- ► ○ⁱ□F for every i
- ► ◇F and □F
- ▷ ◊□F and □◊F
- ► FUG

Running time and Controllers

- all examples till now have linear running time
- ▶ computation of coarsest quotient needs $O(|E| + \log(|V|))$ time
- no speed-up using quotients for refinement (in considered cases)
- similar results for control
- \blacktriangleright also here dichotomy between $\bigcirc \bigcirc \mathsf{F}$ and $\bigcirc \bigcirc \mathsf{F}$
- controlling with respect to $\Diamond F$ and $\Box F$ in $\mathcal{O}(|V|^2)$ time
- controlling with respect to $\bigcirc \Box F$ and $\Box \diamondsuit F$ in $\mathcal{O}(|V|^3)$ time
- speed-up possible

- exact complexity of refinement (model checking is PSPACE-complete)
- consider more complex formulae (more variables)
- general criterion for compatibility
- explain gap between $\bigcirc \bigcirc \mathsf{F}$ and $\bigcirc \bigcirc \mathsf{F}$
- search for general/optimal refining/controlling algorithms

Questions

Questions?