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Idea

I Bisimulations known as tool in model checking

I Properties can be checked on bisimilar (possibly smaller)
models

I Here application of bisimulations to model re�nement

I Restriction to LTL formulae

I shrink - re�ne - expand

I possible speed-up

I possible taming of in�nite systems
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De�nition of Plant Automata

De�nition

A model is a tuple M = (V ,E , g , a) such that

I (V ,E ) is a directed graph,

I g : E → 2Σ is the edge labelling function and

I a : V → 2Π is the node labelling function.

I Π and Σ are disjoint alphabets.

A plant automaton has a unique v0 ∈ V with I ∈ a(v)⇔ v = v0.

• Models correspond to labelled transition systems.

• v0 has the role of a starting node.
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Re�nement

Writing convention: (v , α,w) ∈ E ⇔df α ∈ g(v ,w)

De�nition

A model M ′ = (V ′,E ′, g ′, a′) is called a re�nement of a model
M = (V ,E , g , a) if the following conditions hold:

I V ′ = V

I (v , α,w) ∈ E ′ ⇒ (v , α,w) ∈ E

I a′(v) = a(v)

• Re�nement changes behavior of a model.

• Re�nement keeps node set.

• Every present transition can be disabled or kept.
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Controller

De�nition

Given a model M = (V ,E , g , a) a controller of M is a mapping
c : V → 2Σ such that for all v ∈ V the inclusion
c(v) ⊆ {α | ∃w : (v , α,w) ∈ E} holds. The model
M|c =df (V |c ,E |c , g |c, a|c), also called M controlled by c , is
de�ned as follows:

I V |c =df V

I (v , α,w) ∈ E |c ⇔df (v , α,w) ∈ E ∧ α ∈ c(v)

I (a|c)(v) =df a(v)

• Controller can be used to change a model's behavior.

• Allows only disabling of groups of transitions with common
edge label.
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Runs, Traces and LTL Properties

De�nition

A run r is a �nite or in�nite sequence from V (ΣV )∗ ∪ V (ΣV )ω

such that (vi , α,vi+1) ∈ E holds for all subsequences of r from
VΣV . A run is called a trace if it starts with v0 (the unique node
with I ∈ a(v0)). A plant automaton M is called live if it has at least
one trace and for every �nite trace v0α0v1α1v2α2v3 . . . vi of M
there exist an αi ∈ Σ and a vi+1 ∈ V such that (vi , αi , vi+1) ∈ E
holds.

A plant automaton satis�es an LTL formula ϕ if it is live and every
trace ful�lls ϕ.
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Re�neability and Controllability

De�nition

A plant automaton M is re�neable with respect to an LTL formula
ϕ if there is a re�nement M ′ of M such that M ′ satis�es ϕ. It is
controllable with respect to ϕ if there is a contoller c such that
M|c satis�es ϕ.

Goals:

I deciding re�neabiliy/controllability

I computing an actual re�nement/controller
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Example Plant Automaton
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Re�nement
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Another Plant Automaton
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Another Plant Automaton, controlled
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Runs, Traces and LTL formulae
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I Run: r = v1βv2αw1

I Trace: t = v0αv1αw1(αw2)ω

I t ful�lls ♦F

I even plant automaton satis�es ♦F
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NP-hardness

Theorem

In general, it is NP-hard to decide whether a plant automaton is

re�neable (controllable) with respect to an LTL formula.

Proof:

I reduction from directed Hamilton cycle

I given G = (V ,E ), pick an arbitrary v0 ∈ V

I label all edges with a unique label

I set a(v0) = I and a(v) = F for v 6= v0

I ϕ =df (
|V |−1∧
i=1

©iF) ∧©|V |I
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Bisimulations

De�nition

Given two models M = (V ,E , g , a) and M̂ = (V̂ , Ê , ĝ , â) we call a
relation B ⊆ V × V̂ a bisimulation between M and M̂ if B is both
left and right total and ful�lls the following conditions:

I (v , v̂) ∈ B ⇒ a(v) = â(v̂)

I (v , α,w) ∈ E ∧ (v , v̂) ∈ B ⇒ ∃ŵ ∈ V̂ : (w , ŵ) ∈ B∧
(v̂ , α, ŵ) ∈ Ê

I (v̂ , α, ŵ) ∈ Ê ∧ (v , v̂) ∈ B ⇒ ∃w ∈ V : (w , ŵ) ∈ B∧
(v , α,w) ∈ E

• Autobisimulation: bisimulation between M and itself

• Bisimulation equivalence: autobisimulation + equivalence

• Existence of a coarsest bisimulation equivalence
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Quotients

De�nition

Let B be a bisimulation equivalence for M = (V ,E , g , a). The
quotient M/B is the model (V /B,E/B, g/B, a/B), de�ned as
follows:

I V /B =df {v/B | v ∈ V }
I (v/B, α,w/B) ∈ E/B ⇔df ∃v ′ ∈ v/B,w ′ ∈ v/B :

(v ′, α,w ′) ∈ E

I (a/B)(v/B) =df a(v)
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Expansion

De�nition

Given a model M = (V ,E , g , a), a bisimulation equivalence B for
M and a re�nement (M/B)′ = ((V /B)′, (E/B)′, (g/B)′, (a/B)′)
of M/B we de�ne the expansion

(M/B)′\B = ((V /B)′\B, (E/B)′\B, (g/B)′\B, (a/B)′\B) as
follows:

I (V /B)′\B = V

I (v , α,w) ∈ (E/B)′\B ⇔ (v , α,w) ∈ E ∧ (v/B, α,w/B) ∈
(E/B)′

I ((a/B)′\B)(v) = a(v)
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Quotient
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Expansion
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Compatibility

De�nition

Let ϕ be an LTL formula. We say that ϕ is quotient compatible

with respect to re�nement (control) if for all plant automata M
and all bisimulation quotients M/B of M the equivalence

M is re�neable (controllable) wrt. ϕ ⇔
M/B is re�neable (controllable) wrt. ϕ

holds.

Re�neability of M/B implies re�neability of M by bisimilarity of
(M/B)′ and (M/B)′\B , analogously for controllability
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Simple Case: F

Lemma

F is quotient compatible with respect to re�nement.

Proof:

I consider re�nement M ′ satisfying F

I pick arbitrary in�nite trace p = v0α0v1α1 . . . in M ′

I de�ne (M/B)′ by:
I (V /B)′ =df V /B
I (a/B)′ =df a/B
I (v/B, α,w/B) ∈ (E/B)′ ⇔df ∃i : v ∈ vi/B ∧ w ∈

vi+1/B ∧ α = αi

I check properties (re�nement, liveness, satisfaction)
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Some More Interesting Cases

Lemma

©F is quotient compatible with respect to re�nement.

Proof: similar to the previous case, v0/B = {v0} makes live easy

Lemma

©© F is quotient compatible with respect to re�nement.

Proof: inconvenient, tedious case distinctions (v0 = v2,
v1/B = v2/B , ...)

Lemma

©©©F is not quotient compatible with respect to re�nement.
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Re�ning for ©©©F
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Re�ning for ©©©F
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Two other examples

Lemma

FUG is quotient compatible with respect to re�nement.

Proof: consider trace in M, mind to remove cycles in the quotient

Lemma

©i�F is quotient compatible with respect to re�nement.

Proof: similar to above, premature arrival at F doesn't hurt
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Decidability and Computation

Ideas:

I look for deterministic re�nements

I liveness has to be ensured

I use strongly connected components (SCC)

I every trace has to be trapped in an SCC (in the �nite case)
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Example with Proofs

Lemma

It can be decided in O(|V |+ |E |) time whether M can be re�ned

with respect to F. A corresponding re�nement can also be

computed in O(|V |+ |E |) time.

Proof: test whether F ∈ a(v0) holds and whether an SCC is
reachable from v0

Lemma

It can be decided in O(|V |+ |E |) time whether M can be re�ned

with respect to ©F. A corresponding re�nement can also be

computed in O(|V |+ |E |) time.

Proof:

I F ∈ a(v0) and (v0, v0) ∈ E is obvious

I remove loop from v0 and all edges (v0, vi ) with F /∈ a(vi )

I look for reachable SCCs in the emerging graph
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Examples without Proofs

Lemma

For every formula ϕ of the following list it can be decided in

O(|V |+ |E |) time whether M can be re�ned with respect to ϕ. A

corresponding re�nement can also be computed in O(|V |+ |E |)
time.

I ©© F

I ©i�F for every i

I ♦F and �F

I ♦�F and �♦F

I FUG
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Running time and Controllers

I all examples till now have linear running time

I computation of coarsest quotient needs O(|E |+ log(|V |)) time

I no speed-up using quotients for re�nement (in considered
cases)

I similar results for control

I also here dichotomy between ©© F and ©©©F

I controlling with respect to ♦F and �F in O(|V |2) time

I controlling with respect to ♦�F and �♦F in O(|V |3) time

I speed-up possible
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Outlook and Further Research

I exact complexity of re�nement (model checking is
PSPACE-complete)

I consider more complex formulae (more variables)

I general criterion for compatibility

I explain gap between ©© F and ©©©F

I search for general/optimal re�ning/controlling algorithms

29 / 30



Questions

Questions?
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