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Used Structures

▶ matrices - known

▶ labeled transition systems - known

▶ dioid: (∆,⊕, 0,⊗, 1) with order ⊑ (x ⊑ y ⇔ x ⊕ y = y)

▶ here: transition systems over complete graphs with unique
edge labels drawn from a dioid ∆

▶ modeled by matrices over ∆

▶ ⊕, ⊗ and ⊑ extended to matrices over ∆ in the usual way

▶ 0-1-matrices: all entries either 0 or 1

▶ can be seen as relations over the index/node set

▶ usual concepts like injectivity, transitivity, ... also used for
0-1-matrices
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Why?

▶ least �xpoint of Ax ⊕ b = x (or transposed version) models
▶ shortest paths (∆ = (R ∪ {+∞},min,+,+∞, 0))
▶ maximum capacity paths

(∆ = (R ∪ {±∞},max,min,−∞,+∞))
▶ Bellman-Ford equations
▶ regular languages (automaton, language semiring)
▶ b corresponds to start/terminal states

▶ eigenvectors/eigenvalues used for
▶ hierarchical clustering
▶ preference analysis

▶ see Gondran/Minoux for an extensive overview
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De�nition of Equivalence Decomposition

De�nition

A 0-1-matrix E ∈ ∆n×n is called an equivalence if E is re�exive
(In ⊑ E ), transitive (EE ⊑ E ), and symmetric (E t = E ).

Theorem

Let E ∈ ∆n×n be an equivalence. Then there is a (unique) m ≤ n
and a surjective (left-total) function D ∈ ∆n×m, called an

equivalence decomposition of E , such that DDt = E .
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Intuition behind Equivalence Decomposition

▶ equivalences induce a partition of {1 . . . n} (i.e., the node set
of a transition system)

▶ equivalence classes can be labeled by numbers in {1 . . .m}
▶ Dij = 1 ⇔ node i lies in equivalence class j

▶ not unique:

(
1 0
0 1

)
⊗
(

1 0
0 1

)
=

(
1 0
0 1

)
=

(
0 1
1 0

)
⊗
(

0 1
1 0

)
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Traditional Bisimulations Revisited

▶ consider (classical) transition systems →1⊆ V × Σ× V and
→2⊆ W × Σ×W

▶ a left- and right-total relation B ⊆ V ×W is a bisimulation
between →1 and →2 if it ful�lls the following properties:
▶ ∀σ ∈ Σ : v1 →σ

1
v2 ∧ v1Bw1 ⇒ ∃w2 : w1 →σ

2
w2 ∧ v2Bw2

▶ ∀σ ∈ Σ : w1 →σ
2
w2 ∧ w1B

∪v1 ⇒ ∃v2 : v1 →σ
1
v2 ∧ w2B

∪v2
▶ algebraic formulation:

▶ ∀σ ∈ Σ : B∪;→σ
1
⊆→σ

2
;B∪

▶ ∀σ ∈ Σ : B;→σ
2
⊆→σ

1
;B
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Bisimulations

De�nition

A 0-1-matrix S ∈ ∆n×m is called a bisimulation between two
matrices A ∈ ∆m×m and B ∈ ∆n×n, written A ∼S B , if the two
inequalities SA ⊑ BS and S tB ⊑ AS t hold.

▶ A ∼Si B ⇒ A ∼(
⊕

i∈I Si )
B

▶ A ∼S1 B ∧ B ∼S2 C ⇒ A ∼(S1⊗S2) C

▶ A ∼S B ⇔ B ∼S t A

▶ A ∼In A for A ∈ ∆n×n

De�nition

▶ backward bisimulation for A is bisimulation for At

▶ full bisimulation for A is bisimulation + backward bisimulation
for A
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Multiple Labels vs. Unique Labels

b

a

a b a,b a+b

(
1
1

)
⊗
(
a+ b

)
=

(
a+ b
a+ b

)
=

(
a b
a b

)
⊗

(
1
1

)
(
1 1

)
⊗
(

a b
a b

)
=

(
a b

)
⊑

(
a+ b a+ b

)
=(

a+ b
)
⊗
(
1 1

)
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Bisimulation Equivalences

De�nition

An equivalence E which is a bisimulation between A and itself is
called a bisimulation equivalence.

▶ amounts to EA ⊑ AE

▶ closed under sum

▶ existence of a greatest (wrt. ⊑) bisimulation equivalence for A

▶ known concept from automata theory (equivalence,
minimality)
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Bisimulation Quotient

De�nition

Let E ∈ ∆n×n be a bisimulation equivalence for A ∈ ∆n×n, and let
D ∈ ∆n×m be an equivalence decomposition of E . Then the
quotient of A by D is de�ned by A/D =def DtAD.

Intuition:

▶ node set of A/D corresponds to equivalence classes of E

▶ edge between two nodes of A/D is labeled by sum of all edge
labels in A between nodes of the respective equivalence classes

▶ (in the classical setting set of all such labels)

Theorem

A and A/D are bisimilar.

caveat: not every bisimulation equivalence corresponds to a
classical one!
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Bisimulation Equivalence with Decomposition

1 2 3

b

a
c

c
a a+b c

 1 1 0
1 1 0
0 0 1

⊗

 a b c
a a+ b c
0 0 c

 =

 a a+ b c
a a+ b c
0 0 c

 ⊑ a+ b a+ b c
a+ b a+ b c
0 0 c

 =

 a b c
a a+ b c
0 0 c

⊗

 1 1 0
1 1 0
0 0 1


 1 1 0

1 1 0
0 0 1

 =

 1 0
1 0
0 1

⊗
(

1 1 0
0 0 1

)
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Quotient System

 a b c
a a+ b c
0 0 c

⊗

 1 0
1 0
0 1

 =

 a+ b c
a+ b c
0 c


1

2

3

3

12

a+b
ca+

b

c

c

(
1 1 0
0 0 1

)
⊗

 a+ b c
a+ b c
0 c

 =

(
a+ b c
0 c

)
12 3

c

a+b c
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Compatibility

De�nition

Let E ∈ ∆n×n be an equivalence, and let b be a column vector
with Eb = b. Then b is called compatible with E .

▶ analogous de�nition for row vectors

▶ b is compatible with E ⇔ (Eij = 1 ⇒ bi = bj)
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Quotient and Expansion of Vectors

De�nition

Let D ∈ ∆n×m be an equivalence decomposition of E ∈ ∆n×n, and
let b be a column (row) vector compatible with E . Then the
quotient of b by D is de�ned by b/D =def Dtb (b/D =def bD).

▶ indices of b correspond to equivalence classes of E

▶ entries of b in same equivalence classes are compressed in b/D

De�nition

Let D ∈ ∆n×m be an equivalence decomposition of E ∈ ∆n×n, and
let b̂ be a column (row) vector with m entries. Then the expansion

of b̂ by D is de�ned by b̂\D =def Db̂ (b̂\D =def b̂Dt).

▶ (b̂\D)/D = b̂

▶ (b/D)\D = b (if compatible)
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Solving Problems via Quotients

▶ in general, A/D is smaller then A
▶ idea:

▶ solve problem for quotients
▶ propagate solution back to original problem

▶ derive solution of Ax = b from solution of (A/D)x̂ = b/D

▶ derive solution of Ax + b = x from solution of
(A/D)x̂ + b/D = x̂

▶ derive solution of Ax = λx from solution of (A/D)x̂ = x̂
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Linear Equations

Theorem

Let E be a full bisimulation equivalence for A, let b be a column

vector compatible with E , and let D be an equivalence

decomposition of E . Then there exists a column vector x satisfying

Ax = b i� there exists a column vector x̂ satisfying (A/D)x̂ = b/D.

Moreover, under these conditions, we have A(x̂\D) = b.

▶ all conditions (fullness, compatibility necessary)

▶ counterexamples by Mace4

proof sketch: Ax = b implies existence of x ′ compatible with E
satisfying Ax ′ = b, rest by simple application of de�nitions and
calculation
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Linear Fixpoints

Theorem

Assume that ∆ is a complete dioid. Let E be a bisimulation

equivalence for A, let D be qn equivalence decomposition of E , and

let b be a column vector compatible with E . Denote by xµ the least

solution of the equation Ax ⊕ b = x , and denote by x̂µ the least

solution of (A/D)x̂ ⊕ b/D = x̂ . Then the equality xµ = x̂µ\D
holds.

proof sketch: iterate f (x) = Ax ⊕ b and f̂ (x̂) = (A/D)x̂ ⊕ b/D
starting at zero vector for x and x̂ . Simple induction shows
f i (x) = f̂ i (x̂)\D, apply Knaster-Tarksi.
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Eigenvectors and Eigenvalues

De�nition

x is called right (left) eigenvector of A for the eigenvalue λ if x ̸= 0
and Ax = λx (xA = xλ) hold.

Lemma

Let A, E , D be as always, and let x be a right eigenvector of A for

the eigenvalue λ, and let x be compatible with E . Then x/D is a

right eigenvector of A/D for the eigenvalue λ.

Lemma

Let A, E , D be as always, and let x̂ be a right eigenvector of A/D
for the eigenvalue λ. Then x̂\D is a right eigenvector of A for the

eigenvalue λ.

▶ analogous claims for left eigenvectors do not hold!
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Open Problems

▶ wanted: greatest bisimulation equivalence for A (+
compatibility)

▶ every classical bisimulation equivalence induces bisimulation
equivalence (+ compatibility)

▶ partition re�nement algorithm by Tarjan/Paige

▶ can we do better?

▶ presented approach avoids "point chasing" style of proofs

▶ is it possible to handle multiple edge labels?

▶ how to extend approach to in�nite systems?
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Thanks for Listening

Questions?
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