Covering Polygons with Rectangles

Roland Glück roland.glueck@dlr.de Deutsches Zentrum für Luft- und Raumfahrt Bern, 22nd April 2017

nowledge for tomorrow

www.dlr.de - Slide 1 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Motivation: Cutting Center

∃> • • • • • • 同

www.dlr.de - Slide 2 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Basic Definitions

Definition

- Nesting $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$ is a set of *n* simple polygons.
- Cover $C = \{R_1, R_2, ..., R_m\}$ of a nesting **P** by a gripper R is a set of rectangles such that
 - every R_j is a copy of R, and
 - every polygon $P_i \in \mathbf{P}$ is contained completely in at least one $R_j \in \mathbf{C}$.
- Problem: find an optimal cover, i.e. a cover with minimum cardinality
- Copies of *R* arise from *R* by
 - translation along the x-axis (easy to solve)
 - arbitrary translation (NP-hard)
 - arbitrary translation and rotation (NP-hard, considered here)

www.dlr.de \cdot Slide 3 of 42 > Covering Polygons with Rectangles > Roland Glück \cdot Bern, 22nd April 2017

www.dlr.de \cdot Slide 4 of 42 > Covering Polygons with Rectangles > Roland Glück \cdot Bern, 22nd April 2017

∃> • • • • • • < 🗆 < 🗇

< ≣ > • • • • • • < 🗆 < 🗇

< 🗆 < A

ロ><目><目><目><<
 <
 <

<<p>(日)<</p> < 🗆

www.dlr.de \cdot Slide 9 of 42 > Covering Polygons with Rectangles > Roland Glück \cdot Bern, 22nd April 2017

Optimal Cover

< 🗆 < 🗗

www.dlr.de - Slide 10 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Decomposition of an Optimal Cover

> nac

Decomposition Property

• Notation: given a nesting **P** and a rectangle *R*, we denote by cov(*R*, **P**) the set of all polygons of **P** which are contained completely in *R*.

Decomposition Property

• Notation: given a nesting **P** and a rectangle *R*, we denote by cov(*R*, **P**) the set of all polygons of **P** which are contained completely in *R*.

Lemma

Let $\mathbf{C} = \{R_1, R_2, \dots, R_m\}$ be an optimal cover of $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$ and choose an arbitrary $R_i \in \mathbf{C}$. Then $\mathbf{C} \setminus \{R\}$ is an optimal cover of $\mathbf{P} \setminus \operatorname{cov}(R, \mathbf{P})$.

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

• ... we could remove the rectangle and all polygons contained completely in it, ...

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

- ... we could remove the rectangle and all polygons contained completely in it, ...
- ... proceed recursively with the remaining nesting ...

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

- ... we could remove the rectangle and all polygons contained completely in it, ...
- ... proceed recursively with the remaining nesting ...
- ... till we obtain the empty nesting.

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

- ... we could remove the rectangle and all polygons contained completely in it, ...
- ... proceed recursively with the remaining nesting ...
- ... till we obtain the empty nesting.

Work with a set of **candidate rectangles** containing at least one rectangle from an optimal cover.

500

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

- ... we could remove the rectangle and all polygons contained completely in it, ...
- ... proceed recursively with the remaining nesting ...
- ... till we obtain the empty nesting.

Work with a set of **candidate rectangles** containing at least one rectangle from an optimal cover.

• Idea: Every polygon has to be contained completely in at least one rectangle.

Assume we could compute for every nesting one rectangle of an optimal cover. Then ...

- ... we could remove the rectangle and all polygons contained completely in it, ...
- ... proceed recursively with the remaining nesting ...
- ... till we obtain the empty nesting.

Work with a set of **candidate rectangles** containing at least one rectangle from an optimal cover.

- Idea: Every polygon has to be contained completely in at least one rectangle.
- Choose pivot polygon P_{pi} and compute \subseteq -maximal subsets of **P** containing P_{pi} which are contained in a copy of *R*.

www.dlr.de - Slide 13 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

> < ≣ > •) < (~ < 🗇

www.dlr.de - Slide 14 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

> < ≣ > •) < @ < 🗆 < 🗇

www.dlr.de - Slide 14 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

www.dlr.de - Slide 15 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

www.dlr.de - Slide 15 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

> 9 Q (? ъ AP.

www.dlr.de - Slide 16 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

> 9 Q (? ъ AP.

www.dlr.de - Slide 16 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

< 🗆 < 🗇

www.dlr.de - Slide 17 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

< ≣ > • • • • • • < 🗆 < 🗇

www.dlr.de - Slide 17 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

< 🗆 < 🗇

www.dlr.de - Slide 18 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

∃> • • • • • • < < 🗗

www.dlr.de - Slide 19 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Search Graph

ロ><目><目><目><<
 <
 <

www.dlr.de - Slide 20 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Computation of Candidate Rectangles

How to compute the candidate rectangles?

Two approaches:

- vertex-oriented approach
- polygon-oriented approach

www.dlr.de · Slide 22 of 42 > Covering Polygons with Rectangles > Roland Glück · Bern, 22nd April 2017

Vertex-Oriented Approach - Alignment of a Rectangle

200

www.dlr.de · Slide 22 of 42 > Covering Polygons with Rectangles > Roland Glück · Bern, 22nd April 2017

Vertex-Oriented Approach - Alignment of a Rectangle

200

Vertex-Oriented Approach - Alignment of a Rectangle

200

Observation: Every rectangle *R* of an optimal cover can be replaced by a rectangle where three vertices lie on at least two different adjacent sides of *R*, without destroying optimality (degenerated cases possible but easy to handle).

Observation: Every rectangle *R* of an optimal cover can be replaced by a rectangle where three vertices lie on at least two different adjacent sides of *R*, without destroying optimality (degenerated cases possible but easy to handle).

Hence:

• loop over all triples (v₁, v₂, v₃) of vertices of a nesting

Observation: Every rectangle *R* of an optimal cover can be replaced by a rectangle where three vertices lie on at least two different adjacent sides of *R*, without destroying optimality (degenerated cases possible but easy to handle).

Hence:

- loop over all triples (v1, v2, v3) of vertices of a nesting
- align R on (v_1, v_2, v_3) according to above

200

Observation: Every rectangle *R* of an optimal cover can be replaced by a rectangle where three vertices lie on at least two different adjacent sides of *R*, without destroying optimality (degenerated cases possible but easy to handle).

Hence:

- loop over all triples (v1, v2, v3) of vertices of a nesting
- align R on (v_1, v_2, v_3) according to above
- determine the set of completely contained polygons

> 20 C

Observation: Every rectangle *R* of an optimal cover can be replaced by a rectangle where three vertices lie on at least two different adjacent sides of *R*, without destroying optimality (degenerated cases possible but easy to handle).

Hence:

- loop over all triples (v₁, v₂, v₃) of vertices of a nesting
- align R on (v_1, v_2, v_3) according to above
- determine the set of completely contained polygons
- keep all rectangles containing completely an ⊆-maximal set of polygons including the pivot polygon (modulo cover equivalent rectangles)

www.dlr.de Slide 24 of 42 > Covering Polygons with Rectangles > Roland Glück · Bern, 22nd April 2017

Polygon-Oriented Approach

Idea:

- abstract from rectangles and
- compute all ⊆-maximal sets of polygons contained completely in a copy of R, containing P_{pi}
- by backtracking
- missing jigsaw piece:

> nac

www.dlr.de · Slide 24 of 42 > Covering Polygons with Rectangles > Roland Glück · Bern, 22nd April 2017

Polygon-Oriented Approach

Idea:

- abstract from rectangles and
- compute all ⊆-maximal sets of polygons contained completely in a copy of R, containing P_{pi}
- by backtracking
- missing jigsaw piece:
 - given a rectangle R and a set of polygons $\{P_1, P_2, \ldots, P_n\}$,
 - determine whether there is a copy of R containing all P_i completely, and,
 - if so, compute one such copy

> 20 C

www.dlr.de - Slide 24 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach

Idea:

- abstract from rectangles and
- compute all ⊆-maximal sets of polygons contained completely in a copy of R, containing P_{pi}
- by backtracking
- missing jigsaw piece:
 - given a rectangle R and a set of polygons $\{P_1, P_2, \ldots, P_n\}$,
 - determine whether there is a copy of R containing all P_i completely, and,
 - if so, compute one such copy
- for a suitable rotational part the translational part is easy to determine
- here: rotate polygon set instead of rectangle for better understanding

www.dlr.de - Slide 25 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach - Convex Hull

www.dlr.de - Slide 26 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach - Convex Hull

www.dlr.de - Slide 27 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach - Convex Hull

> nac

Polygon-Oriented Approach - Determining the Height

Polygon-Oriented Approach - Determining the Height

Polygon-Oriented Approach - Determining the Height

> nac

Polygon-Oriented Approach - Intersecting Height and Width Function

- height representable as piecewise defined sine function
- width shifted by $\frac{\pi}{2}$
- determine all intervals where height of the rotated polygon is less-equal to gripper height
- proceed analogously for width
- intersect admissible height- and width intervals

· nac

Polygon-Oriented Approach - Intersecting Height and Width Function

- height representable as piecewise defined sine function
- width shifted by $\frac{\pi}{2}$
- determine all intervals where height of the rotated polygon is less-equal to gripper height
- proceed analogously for width
- intersect admissible height- and width intervals
- interval construction in linear time by means of rotating calipers
- intersection in linear time by means of sweep line
- linear overall running time

www.dlr.de - Slide 32 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach - Graphic Representation

www.dlr.de - Slide 33 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach - Height Intervals

Polygon-Oriented Approach - Height and Width Intervals

www.dlr.de - Slide 35 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Polygon-Oriented Approach - Suitable Intervals

Running Time Estimations

Notation: ||P|| denotes overall number of vertices (clearly, |P| denotes number of polygons)

Running Time Estimations

Notation: ||P|| denotes overall number of vertices (clearly, |P| denotes number of polygons)

- vertex-oriented approach loops roughly over all triples of vertices
- depends only loosely on number of polygons
- running time $\sim O(||\mathbf{P}||^3)$
- well-suited for instances with high number of polygons and low number of vertices

· nac

Running Time Estimations

Notation: ||P|| denotes overall number of vertices (clearly, |P| denotes number of polygons)

- vertex-oriented approach loops roughly over all triples of vertices
- depends only loosely on number of polygons
- running time $\sim O(||\mathbf{P}||^3)$
- well-suited for instances with high number of polygons and low number of vertices
- polygon-oriented approach needs to examine $2^{|\mathbf{P}|}$ combinations of polygons
- but running time linear in $\|\mathbf{P}\|$
- well-suited for instances with high number of vertices and low number of polygons

Experimental Results

Experimental Results

P	P P	polygon-oriented		vertex-oriented				
		μ	Cv	μ	Cv	$\left(\frac{\ \mathbf{P}_n\ }{\ \mathbf{P}_{n-1}\ }\right)^3$	$\frac{\mu_n}{\mu_{n-1}}$	
25	5	1.5	0.28	1.3	0.21	-	-	
25	10	1.3	0.34	9.0 0.2		8	6.9	
25	15	1.1	0.28	32	0.15	3.4	3.6	
25	20	1.8	0.44	78	0.21	2.4	2.4	
25	25	2.0	0.49	160	0.16	2.0	2.1	
25	30	1.3	0.17	290	0.13	1.7	1.8	
25	35	1.4	0.34	540	0.26	1.6	1.9	
25	40	1.6	0.21	760	0.21	1.5	1.4	
25	45	2.5	0.40	960	0.22	1.4	1.3	
25	50	3.2	0.60	1300	0.10	1.4	1.4	
25	55	2.9	0.29	1700	0.27	1.3	1.3	

www.dlr.de - Slide 39 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Experimental Results

polygon-oriented						
P	P	μ	$\frac{\mu_n}{\mu_{n-1}}$			
2000	5	0.021	-			
2000	10	0.064	3.0			
2000	15	0.2	3.1			
2000	20	1.0	5.0			
2000	25	5.2	5.2			
2000	30	15	2.9			
2000	35	49	3.3			
2000	40	400	8.2			

vertex-oriented					
P	Ρ	μ	$\frac{\mu_n}{\mu_{n-1}}$		
500	5	61	-		
500	10	52	0.9 (!)		
500	15	48	0.9 (!)		
500	20	70	1.5		
500	25	75	1.1		
500	30	84	1.1		
500	35	110	1.3		
500	40	120	1.1		

< 🗇

www.dlr.de - Slide 40 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Future Work

- parallelizing the search
- approximation for larger instances
- consider other gripper shapes
- workspace limitations of the gripper

www.dlr.de - Slide 41 of 42 > Covering Polygons with Rectangles > Roland Glück - Bern, 22nd April 2017

Acknowledgments

Thanks to

- Torben Hagerup
- Christian Rähtz
- Lev Sorokin

=> na@

		DLK						
4	Þ	< 1	Þ	4	ъ	Þ	5	۹.